Environmental Perception Q-Learning to Prolong the Lifetime of Poultry Farm Monitoring Networks
Abstract
:1. Introduction
2. Related Work
2.1. Energy-Saving Protocols
2.2. Monitoring Applications
3. Materials and Methods
3.1. Motivation
3.2. System Overview
Algorithm 1 Environmental perception Q-learning | |
Input: learning rate a, discount factor r | |
1: | Initialize the system of sensor node and set the Q-value table to zero. |
2: | For each round (one round corresponds to τ seconds) |
3: | Each sensor collects the temperature, T, and humidity, H, on poultry farms. |
4: | Use environmental-perception module in Section 3.3 and then decide the transmission rate. |
5: | Use Q-learning in Algorithm 2 to adaptively adjust the transmission rate. |
6: | End |
3.3. Environmental-Perception Module
3.3.1. Environmental Model
3.3.2. Rule Base
3.4. Q-learning
Algorithm 2 Q-learning | |
Input: learning rate a, discount factor r | |
1: | Step 1: Compute rewards by using Equation (9). st is the current-round state (i.e., the success rate of packet transmission PSR and the rate of the remaining energy (RER), and at is the current-round action (i.e., the current-round transmission rate and at ∈ action set A). The greater the reward, R(st, at), the better energy savings. |
2: |
R(st, at) = 0.5 × PSR + 0.5 × RER
|
3: | Step 2: Wait next round (i.e., wait τ seconds) and observe the next-round state st+1. |
4: | Step 3: Select the next-round action, at+1, as follows. First, search in the Q-value table, find the maximum Q-Value (i.e., MaxQValue)), and record the index of this maximum Q-value (i.e., MaxQValueIndex). Then, obtain the transmission rate, at+1, at+1 = A(MaxQValueIndex) and then adjust the transmission rate. |
5: | Step 4: Update the Q-value table by |
6: |
Q(st,at) ← Q(st,at) + a×[R(st,at) + r×MaxQValue−Q(st,at)]
|
3.5. Discussions
4. Results and Discussions
4.1. Real Test
4.2. Laboratory Test
4.2.1. Experimental Setting
4.2.2. Performance Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Muangprathub, J.; Boonnam, N.; Kajornkasirat, S.; Lekbangpong, N.; Wanichsombat, A.; Nillaor, P. IoT and agriculture data analysis for smart farm. Comput. Electron. Agric. 2019, 156, 467–474. [Google Scholar] [CrossRef]
- Liang, H.M.; Lin, D.Y.; Hsuuw, Y.D.; Huang, T.P.; Chang, H.L.; Lin, C.Y.; Wu, H.H.; Hung, K.H. Association of heat shock protein 70 gene polymorphisms with acute thermal tolerance, growth, and egg production traits of native chickens in Taiwan. Arch. Anim. Breed. 2016, 59, 173–181. [Google Scholar] [CrossRef]
- Bayhan, A.K.; Karaman, S.; Koskan, O. Effects of heat stress on egg yield and mortality rates of caged poultry houses. Kafkas Univ. Vet. Fak. Derg. 2013, 19, 881–887. [Google Scholar] [CrossRef]
- Nadimi, E.S.; Jorgensen, R.N.; Blanes-Vidal, V.; Christensen, S. Monitoring and classifying animal behavior using ZigBee based mobile ad hoc wireless sensor networks and artificial neural networks. Comput. Electron. Agric. 2012, 82, 44–54. [Google Scholar] [CrossRef]
- Guo, Y.; Corke, P.; Poulton, G.; Wark, T.; Bishop-Hurley, G.; Swain, D. Animal behaviour understanding using wireless sensor networks. In Proceedings of the 31st IEEE Conference on Local Computer Networks, Tampa, FL, USA, 14–16 November 2006. [Google Scholar] [CrossRef] [Green Version]
- Kiani, F. Animal behavior management by energy-efficient wireless sensor networks. Comput. Electron. Agric. 2018, 151, 478–484. [Google Scholar] [CrossRef]
- Dam, T.V.; Langendoen, K. An adaptive energy-efficient MAC protocol for wireless sensor networks. In Proceedings of the First International Conference on Embedded Networked Sensor Systems, Los Angeles, CA, USA, 5–7 November 2003. [Google Scholar] [CrossRef]
- Ye, W.; Heidemann, J.; Estrin, D. Medium access control with coordinated adaptive sleeping for wireless sensor networks. IEEE/Acm Trans. Netw. 2004, 12, 493–506. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.Z.; Miao, C.Y.; Ma, M. An energy-efficient self-adaptive duty cycle MAC protocol for traffic-dynamic wireless sensor networks. Wirel. Pers. Commun. 2013, 68, 1287–1315. [Google Scholar] [CrossRef]
- Ye, D.; Zhang, M. A self-adaptive sleep/wake-up scheduling approach for wireless sensor networks. IEEE Trans. Cybern. 2018, 48, 979–992. [Google Scholar] [CrossRef]
- Nur, F.N.; Sharmin, S.; Razzaque, M.A.; Islam, M.S.; Hassan, M.M. A low duty cycle MAC protocol for directional wireless sensor networks. Wirel. Pers. Commun. 2017, 96, 5035–5059. [Google Scholar] [CrossRef]
- Xu, D.H.; Wang, K. MDA-SMAC: An energy-efficient improved SMAC protocol for wireless sensor networks. KSII Trans. Internet Inf. Syst. 2018, 12, 4754–4773. [Google Scholar] [CrossRef]
- Nguyen, B.T.; Murphy, L.; Muntean, G. Energy-efficient QoS-based congestion control for reliable communications in wireless multimedia sensor wetworks. In Proceedings of the 2018 IEEE International Conference on Communications (ICC)/Workshop on Integrating UAVs into 5G, Kansas City, MO, USA, 20–24 May 2018. [Google Scholar] [CrossRef]
- Kumar, S.; Kim, H. Energy efficient scheduling in wireless sensor networks for periodic data gathering. IEEE Access 2019, 7, 11410–11426. [Google Scholar] [CrossRef]
- Masud, F.; Abdullah, A.H.; Altameem, A.; Abdul-Salaam, G.; Muchtar, F. Traffic class prioritization-based slotted-CSMA/CA for IEEE 802.15.4 MAC in intra-WBANs. Sensors 2019, 19, 466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmedy, I.; Shehadeh, H.A.; Idris, M.Y.I. An estimation of QoS for classified based approach and nonclassified based approach of wireless agriculture monitoring network using a network model. Wirel. Commun. Mob. Comput. 2017, 2017, 3626571. [Google Scholar] [CrossRef]
- Li, F.F.; Zhu, H.J.; Wu, H.R. Farmland multi-parameter wireless sensor network data compression strategy. Intern. J. Ad Hoc Ubiq. Comput. 2018, 29, 221–231. [Google Scholar] [CrossRef]
- Luo, H.B.; He, M.H.; Ruan, Z.Q.; Zeng, X.X. Optimal sleep time controller based on traffic prediction and residual energy in duty-cycled wireless sensor networks. Intern. J. Distrib. Sens. Netw. 2017, 13, 1550147717748909. [Google Scholar] [CrossRef]
- Tian, J.; Wang, Y.; Liang, X.; Wang, G.; Zhang, Y. WA-MAC: A weather adaptive MAC protocol in survivability-heterogeneous wireless sensor networks. Ad Hoc Netw. 2017, 67, 40–52. [Google Scholar] [CrossRef]
- Kang, J.G.; Lim, D.W.; Jung, J.W. Energy-efficient forest fire prediction model based on two-stage adaptive duty-cycled hybrid X-MAC protocol. Sensors 2018, 18, 2960. [Google Scholar] [CrossRef] [Green Version]
- Valente, A.; Silva, S.; Duarte, D.; Pinto, F.C.; Soares, S. Low-cost LoRaWAN node for agro-intelligence IoT. Electronics 2020, 9, 987. [Google Scholar] [CrossRef]
- Prakosa, S.W.; Faisal, M.; Adhitya, Y.; Leu, J.S.; Köppen, M.; Avian, C. Design and implementation of LoRa based IoT scheme for Indonesian rural area. Electronics 2021, 10, 77. [Google Scholar] [CrossRef]
- Hurwitz, S.; Weiselberg, M.; Eisner, U.; Bartov, I.; Riesenfeld, G.; Sharvit, M.; Bornstein, S. The energy requirements and performance of growing chickens and turkeys as affected by environmental temperature. Poult. Sci. 1980, 59, 2290–2299. [Google Scholar] [CrossRef]
- Ferraz, P.F.P.; Yanagi, T.; de Lima, R.R.; Ferraz, G.; Xin, H.W. Performance of chicks subjected to thermal challenge. Pesqui. Agropecu. Bras. 2017, 52, 113–120. [Google Scholar] [CrossRef] [Green Version]
- Jin, C.; Allen-Zhu, Z.; Bubeck, S.; Jordan, M.I. Is Q-Learning provably efficient? In Proceedings of the 32nd Conference on Neural Information Processing Systems, Montreal, QC, Canada, 2–8 December 2018; Available online: https://arxiv.org/abs/1807.03765 (accessed on 29 November 2021).
- Gholamnia, M.; Alavipanah, S.K.; Darvishi Boloorani, A.; Hamzeh, S.; Kiavarz, M. Diurnal air temperature modeling based on the land surface temperature. Remote Sens. 2017, 9, 915. [Google Scholar] [CrossRef] [Green Version]
- Göttsche, F.M.; Olesen, F.S. Modelling the effect of optical thickness on diurnal cycles of land surface temperature. Remote Sens. Environ. 2009, 113, 2306–2316. [Google Scholar] [CrossRef]
- Duan, S.B.; Li, Z.L.; Wang, N.; Wu, H.; Tang, B.H. Evaluation of six land-surface diurnal temperature cycle models using clear-sky in situ and satellite data. Remote Sens. Environ. 2012, 124, 15–25. [Google Scholar] [CrossRef]
- Kottayil, A.; John, V.O.; Buehler, S.A. Evaluating the diurnal cycle of upper tropospheric humidity in two different climate models using satellite observations. Remote Sens. 2016, 8, 325. [Google Scholar] [CrossRef] [Green Version]
Name/Reference | Discussions |
---|---|
T-MAC [7] S-MAC [8] SEA-MAC [9] SA-Mech [10] | Adjusting duty cycle with sleeping in a periodic or non-periodic manner is effective to improve the efficiency of channel utilization. However, channel competition is unavoidable when the network’s throughput increases. Simply put, in a unit of time, with the number of frames to be sent increasing, frame collision becomes more serious. |
DCD-MAC [11] MDA-SMAC [12] eqCC [13] cf-TDMA [14] TCP-CSMA/CA [15] | There are different methods to reduce the frame-collision probability and avoid wasted energy of retransmissions. In principle, these methods are usually based on some assumptions or additional hardware. However, there are many uncertain factors in the real-world applications, such as time shifts in low-cost nodes, mutual interferences in the densely deployed node regions, the sink-node-region congestion in the star topology, and so on. |
Name/Reference | Discussions |
---|---|
SAMN [16] | Field: agriculture Professional knowledge: distinguish the crop’s sensitivity to select monitoring model |
MFWSN [17] | Field: farmland Professional knowledge: take advantage of continuity in time and spatial variation of parameter data in farmlands |
a tradeoff algorithm [18] | Field: green belts, greenhouses, and smart offices Professional knowledge: a traffic-prediction method to estimate the next-period packet number |
WA-MAC [19] | Field: the known weather-forecast-information applications Professional knowledge: use weather forecast information to schedule sensors |
ADX-MAC [20] | Field: detect forest fires Professional knowledge: based on forest-fire prediction knowledge |
animal behavior monitoring WSN [6] | Field: monitor animal behaviors Professional knowledge: classify each kind of animal behavior and transmit the corresponding information |
cluster network based on LoRaWAN [21] | Field: intelligence agriculture Professional knowledge: cluster network for realizing easy installation and maintenance |
LoRa system [22] | Field: smart agriculture Professional knowledge: improve the maximum coverage using different factors and bandwidths |
Parameters | Values |
---|---|
Channel bit rate | 250 kbps |
Packet header length | 7 bytes |
Payload length | 64 bytes |
ACK packet’s length | 10 bytes |
Beacon length | 6 bytes |
Beacon interval | 100 ms |
TA duration (T-MAC) | 6134 us |
Sleep time(S-MAC, T-MAC) | 25 ms |
The TX time (i.e., Ttx) | 2272 us |
The RX time (i.e., Trx) | 512 us |
The battery’s capacity | 2000 mAh |
Learning rate α (EPQL) | 0.1 |
Discount rate r (EPQL) | 0.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Z.; Pan, P.; Liu, J.; Shi, B.; Yan, M.; Zhang, H. Environmental Perception Q-Learning to Prolong the Lifetime of Poultry Farm Monitoring Networks. Electronics 2021, 10, 3024. https://doi.org/10.3390/electronics10233024
Wu Z, Pan P, Liu J, Shi B, Yan M, Zhang H. Environmental Perception Q-Learning to Prolong the Lifetime of Poultry Farm Monitoring Networks. Electronics. 2021; 10(23):3024. https://doi.org/10.3390/electronics10233024
Chicago/Turabian StyleWu, Zike, Pan Pan, Jieqiang Liu, Beibei Shi, Ming Yan, and Hongguang Zhang. 2021. "Environmental Perception Q-Learning to Prolong the Lifetime of Poultry Farm Monitoring Networks" Electronics 10, no. 23: 3024. https://doi.org/10.3390/electronics10233024
APA StyleWu, Z., Pan, P., Liu, J., Shi, B., Yan, M., & Zhang, H. (2021). Environmental Perception Q-Learning to Prolong the Lifetime of Poultry Farm Monitoring Networks. Electronics, 10(23), 3024. https://doi.org/10.3390/electronics10233024