Predictive Wireless Channel Modeling of MmWave Bands Using Machine Learning
Abstract
:1. Introduction
2. System Model Formulation
Theorem
3. Data Driven Modeling and Prepossessing
3.1. Channel Impulse Response
3.2. Random Forest
- Bagging: Many estimators are built independently using a subset of the training data and with the usage of the data set, then prediction outputs are averaged. The bagging method reduces the variance and low impact on the bias. The learning processes are in parallel and an example of it is the Random Forests.
- Boosting: This is a supporting mechanism where estimators are built sequentially. This means that the learning process builds of an estimator is based on prior learning of a different estimator. Boosting is based on combining multiples of weak learners to form a stronger one and an example of it is adaptive boosting (known as Adaboost).
3.3. Multilayer Perceptrons
3.4. Neural Network Optimization
- Gradient descent (GD) which is based on applying the gradient algorithm to every single observation in the training set.
- Stochastic gradient descent (SGD) is the opposite of the SG method. SGD introduces a random sample of the data on its iteration. The cons of this method are the slowness.
- Batch gradient descent is based on feeding all data to the network at the same time. The disadvantage of this method is the high risk while the positive is the processing speed.
- Mini-batch gradient descent: is based on feeding the networks with N random of a group of samples to overcome the cons on the SGD such as the acceleration processes.
3.5. The Neural Network Structure
4. Results
4.1. Bands
4.2. Path Loss
4.3. Validation Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Aldossari, S. Artificial Intelligence Towards the Wireless Channel Modeling Communications in 5G. Ph.D. Thesis, University of South Florida, Tampa, FL, USA, 2020. [Google Scholar]
- Wang, T.; Wen, C.K.; Wang, H.; Gao, F.; Jiang, T.; Jin, S. Deep Learning for Wireless Physical Layer: Opportunities and Challenges. China Commun. 2017, 14, 92–111. [Google Scholar] [CrossRef]
- Nawaz, S.J.; Sharma, S.K.; Wyne, S.; Patwary, M.N.; Asaduzzaman, M. Quantum Machine Learning for 6G Communication Networks: State-of-the-Art and Vision for the Future. IEEE Access 2019, 7, 46317–46350. [Google Scholar] [CrossRef]
- Jiang, C.; Zhang, H.; Ren, Y.; Han, Z.; Chen, K.; Hanzo, L. Machine Learning Paradigms for Next-Generation Wireless Networks. IEEE Wirel. Commun. 2017, 24, 98–105. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Liu, S.R.; Xiang, W.; Xu, L.; Qin, K.; Yan, X.Y. A Real-Time Channel Prediction Model Based on Neural Networks for Dedicated Short-Range Communications. Sensors 2019, 19, 3541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aldossari, S.; Chen, K.C. Relay selection for 5g new radio via artificial neural networks. In Proceedings of the 22nd International Symposium on Wireless Personal Multimedia Communications (WPMC), Lisbon, Portugal, 24–27 November 2019; pp. 1–6. [Google Scholar]
- Kurniawan, E.; Zhiwei, L.; Sun, S. Machine Learning-Based Channel Classification and Its Application to IEEE 802.11ad Communications. In Proceedings of the GLOBECOM 2017—2017 IEEE Global Communications Conference, Singapore, 4–8 December 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Aldossari, S.M.; Chen, K.-C. System and Method for Predicting Wireless Channel Path Loss. U.S. Patent 11,128,391, 21 September 2021. [Google Scholar]
- Zhang, Y.; Wen, J.; Yang, G.; He, Z.; Wang, J. Path Loss Prediction Based on Machine Learning: Principle, Method, and Data Expansion. Appl. Sci. 2019, 9, 1908. [Google Scholar] [CrossRef] [Green Version]
- Das, S.S.; Prasad, R. Evolution of Air Interface Towards 5G: Radio Access Technology and Performance Analysis; River Publishers: Gistrup, Denmark, 2019. [Google Scholar]
- Pometcu, L.; D’Errico, R. An Indoor Channel Model for High Data-Rate Communications in D-Band. IEEE Access 2020, 8, 9420–9433. [Google Scholar] [CrossRef]
- Ates, H.F.; Hashir, S.M.; Baykas, T.; Gunturk, B.K. Path Loss Exponent and Shadowing Factor Prediction From Satellite Images Using Deep Learning. IEEE Access 2019, 7, 101366–101375. [Google Scholar] [CrossRef]
- FC Commission. FCC Takes Steps to Open Spectrum Horizons for New Services and Technologies; FC Commission: Washington, DC, USA, 2019. [Google Scholar]
- Hossain, F.; Geok, T.K.; Rahman, T.A.; Hindia, M.N.; Dimyati, K.; Ahmed, S.; Tso, C.P.; Rahman, A.; Ziela, N. An efficient 3-D ray tracing method: Prediction of indoor radio propagation at 28 GHz in 5G network. Electronics 2019, 8, 286. [Google Scholar] [CrossRef] [Green Version]
- Xing, Y.; Rappaport, T.S. Propagation Measurement System and Approach at 140 GHz-Moving to 6G and Above 100 GHz. In Proceedings of the 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, 9–13 December 2018; pp. 1–6. [Google Scholar] [CrossRef] [Green Version]
- Ayadi, M.; Ben Zineb, A.; Tabbane, S. A UHF Path Loss Model Using Learning Machine for Heterogeneous Networks. IEEE Trans. Antennas Propag. 2017, 65, 3675–3683. [Google Scholar] [CrossRef]
- Liao, Y.; Shen, X.; Sun, G.; Dai, X.; Wan, S. EKF/UKF-based channel estimation for robust and reliable communications in V2V and IIoT. EURASIP J. Wirel. Commun. Netw. 2019, 2019, 144. [Google Scholar] [CrossRef]
- Aldossari, S.; Chen, K.C. Predicting the Path Loss of Wireless Channel Models Using Machine Learning Techniques in MmWave Urban Communications. In Proceedings of the 22ND International Symposium on Wireless Personal Multimedia Communications (WPMC), Lisbon, Portugal, 24–27 November 2019; pp. 1–5. [Google Scholar]
- Wang, J.; Jiang, C.; Zhang, H.; Ren, Y.; Chen, K.C.; Hanzo, L. Thirty years of machine learning: The road to Pareto-optimal wireless networks. IEEE Commun. Surv. Tutor. 2020, 22, 1472–1514. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.; Rappaport, T.S.; Thomas, T.A.; Ghosh, A.; Nguyen, H.C.; Kovács, I.Z.; Rodriguez, I.; Koymen, O.; Partyka, A. Investigation of Prediction Accuracy, Sensitivity, and Parameter Stability of Large-Scale Propagation Path Loss Models for 5G Wireless Communications. IEEE Trans. Veh. Technol. 2016, 65, 2843–2860. [Google Scholar] [CrossRef]
- Friis, H.T. A note on a simple transmission formula. Proc. IRE 1946, 34, 254–256. [Google Scholar] [CrossRef]
- Saunders, S.R.; Aragón-Zavala, A. Antennas and Propagation for Wireless Communication Systems; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Wang, J.; Jiang, C.; Zhang, H.; Ren, Y.; Chen, K.C.; Hanzo, L.H. Thirty Years of Machine Learning: The Road to Pareto-Optimal Next-Generation Wireless Networks. arXiv 2019, arXiv:1902.01946. [Google Scholar] [CrossRef] [Green Version]
- Kibria, M.G.; Nguyen, K.; Villardi, G.P.; Zhao, O.; Ishizu, K.; Kojima, F. Big data analytics, machine learning, and artificial intelligence in next-generation wireless networks. IEEE Access 2018, 6, 32328–32338. [Google Scholar] [CrossRef]
- Sun, S.; Rappaport, T.S.; Rangan, S.; Thomas, T.A.; Ghosh, A.; Kovacs, I.Z.; Rodriguez, I.; Koymen, O.; Partyka, A.; Jarvelainen, J. Propagation Path Loss Models for 5G Urban Micro- and Macro-Cellular Scenarios. In Proceedings of the 2016 IEEE 83rd Vehicular Technology Conference, Nanjing, China, 15–18 May 2016; pp. 1–6. [Google Scholar] [CrossRef] [Green Version]
- Dai, H.N.; Wong, R.C.W.; Wang, H.; Zheng, Z.; Vasilakos, A.V. Big Data Analytics for Large-scale Wireless Networks. ACM Comput. Surv. 2019, 52, 1–36. [Google Scholar] [CrossRef] [Green Version]
- Kristem, V.; Bas, C.U.; Wang, R.; Molisch, A.F. Outdoor Wideband Channel Measurements and Modeling in the 3–18 GHz Band. IEEE Trans. Wirel. Commun. 2018, 17, 4620–4633. [Google Scholar] [CrossRef]
- Zhang, Y.; Wen, J.; Yang, G.; He, Z.; Luo, X. Air-to-Air Path Loss Prediction Based on Machine Learning Methods in Urban Environments. Wirel. Commun. Mob. Comput. 2018, 2018, 8489326. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- Friedman, J.; Hastie, T.; Tibshirani, R. The Elements of Statistical Learning; Springer Series in Statistics; Springer: New York, NY, USA, 2001; Volume 1. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:cs.LG/1412.6980. [Google Scholar]
- Fletcher, R. Practical Methods of Optimization, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 1987. [Google Scholar]
- Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE)–Arguments against avoiding RMSE in the literature. Geosci. Model Dev. 2014, 7, 1247–1250. [Google Scholar] [CrossRef] [Green Version]
Parameters | Values |
---|---|
Distance (m) | 1–300 |
Frequency (GHz) | 95 |
Bandwidth (MHz) | 800 |
TXPower (dBm) | 300 |
Scenario | UMa |
Polarization | Co-Pol |
TxArrayType | ULA |
RxArrayType | ULA |
Antenna | SISO |
Tx/Rx antenna Azimuth and Elevation (red) | 10 |
MLP Models | Hidden Layers | Learning Rate |
---|---|---|
Model 1 | 3 | |
Model 2 | 3 | |
Model 3 | 5 | |
Model 4 | 6 | |
Model 5 | 6 | |
Model 6 | 7 |
ML Models | R-Square | MAE | MSE | RMSE |
---|---|---|---|---|
Model 1 | 65.6 | 0.73 | 12.2.9 | 17.3 |
Model 2 | 63.3 | 13.3 | 322.2 | 17.9 |
Model 3 | 65.0 | 12.9 | 306.8 | 17.5 |
Model 4 | 67.1 | 12.2 | 287.7 | 17.0 |
Model 5 | 65.0 | 12.7 | 307.0 | 17.5 |
Model 6 | 66.2 | 12.6 | 296.4 | 17.2 |
Model 7 | 73.0 | 11.7 | 238.9 | 15.45 |
Random Forests Regress (RFR) | 83.7 | 10.5 | 142.5 | 11.94 |
RFR and PCA | 90.23 | 9.8 | 132.6 | 3.89 |
ML Models | R-Square | MAE | MSE | RMSE |
---|---|---|---|---|
Model 1 | 73.63 | 5.94 | 60.81 | 7.79 |
Model 2 | 75.02 | 5.91 | 57.61 | 7.59 |
Model 3 | 73.00 | 6.24 | 62.77 | 7.93 |
Model 4 | 76.48 | 5.77 | 54.24 | 7.36 |
Random Forests Regress | 89.18 | 3.34 | 24.93 | 4.99 |
ML Models | R-Square A | R-Square B |
---|---|---|
Model 1 | 65.6 | 70.6 |
Model 2 | 63.3 | 70.9 |
Model 3 | 65.0 | 63.9 |
Model 4 | 67.1 | 63.8 |
Model 5 | 65.0 | 77.3 |
Model 6 | 66.2 | 76.9 |
Model 7 | 73.0 | 79.4 |
Random Forests Regress | 83.7 | 94.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aldosary, A.M.; Aldossari, S.A.; Chen, K.-C.; Mohamed, E.M.; Al-Saman, A. Predictive Wireless Channel Modeling of MmWave Bands Using Machine Learning. Electronics 2021, 10, 3114. https://doi.org/10.3390/electronics10243114
Aldosary AM, Aldossari SA, Chen K-C, Mohamed EM, Al-Saman A. Predictive Wireless Channel Modeling of MmWave Bands Using Machine Learning. Electronics. 2021; 10(24):3114. https://doi.org/10.3390/electronics10243114
Chicago/Turabian StyleAldosary, Abdallah Mobark, Saud Alhajaj Aldossari, Kwang-Cheng Chen, Ehab Mahmoud Mohamed, and Ahmed Al-Saman. 2021. "Predictive Wireless Channel Modeling of MmWave Bands Using Machine Learning" Electronics 10, no. 24: 3114. https://doi.org/10.3390/electronics10243114
APA StyleAldosary, A. M., Aldossari, S. A., Chen, K.-C., Mohamed, E. M., & Al-Saman, A. (2021). Predictive Wireless Channel Modeling of MmWave Bands Using Machine Learning. Electronics, 10(24), 3114. https://doi.org/10.3390/electronics10243114