Electronic Devices for Stress Detection in Academic Contexts during Confinement Because of the COVID-19 Pandemic
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measurement Protocol and Volunteers Selection
2.2. Galvanic Skin Response (GSR)
2.3. Electronic Nose System (E-Nose)
2.3.1. Design
2.3.2. Measurement Protocol
2.4. Electromyography System
2.4.1. Design
2.4.2. Measurement Protocol
2.5. Heart Rate Variability
2.6. Processing Methods
2.6.1. Linear Discriminant Analysis (LDA)
2.6.2. K Nearest Neighbors (KNN)
2.6.3. SVM
2.7. SISCO Inventory
3. Results
3.1. GSR Responses
GSR Data Processing
3.2. E-Nose Responses
3.3. EMG Responses
3.4. HRV Responses
3.5. SISCO Method Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pozos-Radillo, B.E.; Preciado-Serrano, M.D.L.; Acosta-Fernández, M.; Aguilera-Velasco, M.D.L.Á.; Delgado-García, D.D. Academic stress as a predictor of chronic stress in university students. Psicol. Educ. 2014, 20, 47–52. [Google Scholar] [CrossRef] [Green Version]
- Lazarus, R.S.; Folkman, S. Cognitive Theories of Stress and the Issue of Circularity. Dyn. Stress 1986, 770–779. [Google Scholar] [CrossRef]
- Jiménez, C.F.; Sánchez, T.P. Afrontamiento, Estrés Y Bienestar Psicológico en Estudiantes de Educación Social de Nuevo Ingreso. EduPsykhé Rev. Psicol. Y Educ. Introd. 2011, 10, 177–192. [Google Scholar]
- Bedewy, D.; Gabriel, A. Examining perceptions of academic stress and its sources among university students: The Perception of Academic Stress Scale. Health Psychol. Open 2015, 1–9. [Google Scholar] [CrossRef]
- Macgeorge, E.L.; Samter, W.; Gillihan, S.J. Academic Stress, Supportive Communication, and Health. Commun. Educ. 2007, 37–41. [Google Scholar] [CrossRef]
- Shankar, N.L.; Park, C.L. Effects of stress on students’ physical and mental health and academic success. Int. J. Sch. Educ. Psychol. 2016, 3603, 4–9. [Google Scholar] [CrossRef]
- Weidner, G.; Kohlmann, C.; Dotzauer, E.; Burns, L.R. Anxiety, Stress, & Coping: An The effects of academic stress on health behaviors in young adults. Anxiety Stress Coping 2015, 37–41. [Google Scholar] [CrossRef]
- Hystad, S.W.; Eid, J.; Laberg, J.C.; Johnsen, B.H.; Bartone, P.T. Scandinavian Journal of Educational Academic Stress and Health: Exploring the Moderating Role of Personality Hardiness. Scand. J. Educ. Res. 2014, 37–41. [Google Scholar] [CrossRef]
- Von Känel, R. Acute mental stress and hemostasis: When physiology becomes vascular harm. Thromb. Res. 2015, 135, S52–S55. [Google Scholar] [CrossRef] [Green Version]
- Wadsworth, M.E. Development of Maladaptive Coping: A Functional Adaptation to Chronic, Uncontrollable Stress. Child Dev. Perspect. 2015, 9, 96–100. [Google Scholar] [CrossRef]
- Urzo, K.A.D.; La, C.L.; Williams, J.S.; Stuckless, T.J.R.; King, T.J.; Plotnick, M.D.; Gurd, B.J.; Harkness, K.L.; Pyke, K.E. The impact of acute mental stress on brachial artery flow-mediated dilation in women diagnosed with depression. Int. J. Psychophysiol. 2019, 135, 113–120. [Google Scholar] [CrossRef] [PubMed]
- King Echeverría, L.F.; Lafont Castillo, T.I. The impact of Covid-19 on the internationalization of Colombian education. J. Learn. Styles 2020, 13, 95–114. [Google Scholar]
- Sahu, P. Closure of Universities Due to Coronavirus Disease 2019 (COVID-19): Impact on Education and Mental Health of Students and Academic Staff. Cureus 2020, 2019, 4–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capone, V.; Caso, D.; Donizzetti, A.R.; Procentese, F. University Student Mental Well-Being during COVID-19 Outbreak: What Are the Relationships between Information Seeking, Perceived Risk and Personal Resources Related to the Academic Context? Sustainability 2020, 12, 7039. [Google Scholar] [CrossRef]
- Pourmohammadi, S.; Maleki, A. Stress detection using ECG and EMG signals: A comprehensive study. Comput. Methods Programs Biomed. 2020, 193. [Google Scholar] [CrossRef]
- Zubair, M.; Yoon, C. Biomedical Signal Processing and Control Multilevel mental stress detection using ultra-short pulse rate variability series. Biomed. Signal Process. Control 2020, 57, 101736. [Google Scholar] [CrossRef]
- García-Ros, R.; Pérez-González, F.; Tomás, J.M. Development and validation of the questionnaire of academic stress in secondary education: Structure, reliability and nomological validity. Int. J. Environ. Res. Public Health 2018, 15, 2023. [Google Scholar] [CrossRef] [Green Version]
- Williams, S.; Cooper, C.L. Measuring occupational stress: Development of the pressure management indicator. J. Occup. Health Psychol. 1998, 3, 306–321. [Google Scholar] [CrossRef]
- Zlomke, K.R. Psychometric properties of internet administered versions of Penn State Worry Questionnaire (PSWQ) and Depression, Anxiety, and Stress Scale (DASS). Comput. Hum. Behav. 2009, 25, 841–843. [Google Scholar] [CrossRef]
- Xia, L.; Malik, A.S.; Subhani, A.R. A physiological signal-based method for early mental-stress detection. Biomed. Signal Process. Control 2018, 46, 18–32. [Google Scholar] [CrossRef]
- Sun, F.; Kuo, C.; Cheng, H.; Buthpitiya, S.; Collins, P.; Griss, M. Activity-Aware Mental Stress Detection Using Physiological Sensors. In Proceedings of the MobiCASE 2010, Santa Clara, CA, USA, 25–28 October 2010; pp. 211–230. [Google Scholar] [CrossRef]
- Reinhardt, T.; Schmahl, C.; Wüst, S.; Bohus, M. Salivary cortisol, heart rate, electrodermal activity and subjective stress responses to the Mannheim Multicomponent Stress Test (MMST). Psychiatry Res. 2012, 198, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Machado Fernández, J.R.; Anishchenko, L. Mental stress detection using bioradar respiratory signals. Biomed. Signal Process. Control 2018, 43, 244–249. [Google Scholar] [CrossRef]
- Javorka, M.; El-Hamad, F.; Czippelova, B.; Turianikova, Z.; Krohova, J.; Lazarova, Z.; Baumert, M. Role of respiration in the cardiovascular response to orthostatic and mental stress. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2018, 314, R761–R769. [Google Scholar] [CrossRef] [PubMed]
- Alberdi, A.; Aztiria, A.; Basarab, A. Towards an automatic early stress recognition system for office environments based on multimodal measurements: A review. J. Biomed. Inform. 2016, 59, 49–75. [Google Scholar] [CrossRef] [PubMed]
- Palanisamy, K.; Murugappan, M.; Yaacob, S. Descriptive analysis of skin temperature variability of sympathetic nervous system activity in stress. J. Phys. Ther. Sci. 2012, 24, 1341–1344. [Google Scholar] [CrossRef] [Green Version]
- Vinkers, C.H.; Penning, R.; Hellhammer, J.; Verster, J.C.; Klaessens, J.H.G.M.; Olivier, B.; Kalkman, C.J. The effect of stress on core and peripheral body temperature in humans. Stress 2013, 16, 520–530. [Google Scholar] [CrossRef]
- Wang, J.S.; Lin, C.W.; Yang, Y.T.C. A k-nearest-neighbor classifier with heart rate variability feature-based transformation algorithm for driving stress recognition. Neurocomputing 2013, 116, 136–143. [Google Scholar] [CrossRef]
- Ghaderi, A.; Frounchi, J.; Farnam, A. Machine learning-based signal processing using physiological signals for stress detection. In Proceedings of the 2015 22nd Iranian Conference on Biomedical Engineering (ICBME), Tehran, Iran, 25–27 November 2015; pp. 93–98. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, L.; Zhang, B.; Zhan, C.A. Short-term HRV in young adults for momentary assessment of acute mental stress. Biomed. Signal Process. Control 2020, 57, 101746. [Google Scholar] [CrossRef]
- Teixeira Ribeiro, R.; Silva Cunha, J.P. A regression approach based on separability maximization for modeling a continuous-valued stress index from electrocardiogram data. Biomed. Signal Process. Control 2018, 46, 33–45. [Google Scholar] [CrossRef]
- Lampert, R. ECG signatures of psychological stress. J. Electrocardiol. 2015, 48, 1000–1005. [Google Scholar] [CrossRef] [Green Version]
- Jebelli, H.; Hwang, S.; Lee, S.H. EEG-based workers’ stress recognition at construction sites. Autom. Constr. 2018, 93, 315–324. [Google Scholar] [CrossRef]
- Imperatori, C.; Bersani, F.S.; Massullo, C.; Carbone, G.A.; Salvati, A.; Mazzi, G.; Cicerale, G.; Carrara, A.; Farina, B. Neurophysiological correlates of religious coping to stress: A preliminary EEG power spectra investigation. Neurosci. Lett. 2020, 728, 134956. [Google Scholar] [CrossRef] [PubMed]
- Goshvarpour, A.; Abbasi, A.; Goshvarpour, A. An accurate emotion recognition system using ECG and GSR signals and matching pursuit method. Biomed. J. 2017, 40, 355–368. [Google Scholar] [CrossRef]
- Giakoumis, D.; Tzovaras, D.; Hassapis, G. Subject-dependent biosignal features for increased accuracy in psychological stress detection. Int. J. Hum. Comput. Stud. 2013, 71, 425–439. [Google Scholar] [CrossRef]
- Liu, Y.; Du, S. Psychological stress level detection based on electrodermal activity. Behav. Brain Res. 2018, 341, 50–53. [Google Scholar] [CrossRef]
- Ren, P.; Barreto, A.; Huang, J.; Gao, Y.; Ortega, F.R.; Adjouadi, M. Off-line and on-line stress detection through processing of the pupil diameter signal. Ann. Biomed. Eng. 2014, 42, 162–176. [Google Scholar] [CrossRef] [PubMed]
- Torres-Salomao, L.A.; Mahfouf, M.; El-Samahy, E. Pupil diameter size marker for incremental mental stress detection. In Proceedings of the 2015 17th International Conference on E-Health Networking, Application & Services (HealthCom), Boston, MA, USA, 14–17 October 2015; pp. 286–291. [Google Scholar] [CrossRef]
- Sriramprakash, S.; Prasanna, V.D.; Murthy, O.V.R. Stress Detection in Working People. Procedia Comput. Sci. 2017, 115, 359–366. [Google Scholar] [CrossRef]
- Luijcks, R.; Hermens, H.J.; Bodar, L.; Vossen, C.J.; van Os, J.; Lousberg, R. Experimentally Induced Stress Validated by EMG Activity. PLoS ONE 2014, 9, e95215. [Google Scholar] [CrossRef] [Green Version]
- Wijsman, J.; Grundlehner, B.; Penders, J.; Hermens, H. Trapezius muscle EMG as predictor of mental stress. Trans. Embed. Comput. Syst. 2013, 12, 1–20. [Google Scholar] [CrossRef]
- Zamkah, A.; Hui, T.; Andrews, S.; Dey, N.; Shi, F.; Sherratt, R.S. Identification of suitable biomarkers for stress and emotion detection for future personal affective wearable sensors. Biosensors 2020, 10, 40. [Google Scholar] [CrossRef] [Green Version]
- Martin, H.J.; Turner, M.A.; Bandelow, S.; Edwards, L.; Riazanskaia, S.; Thomas, C.L.P. Volatile organic compound markers of psychological stress in skin: A pilot study. J. Breath Res. 2016, 10, 46012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Groot, J.H.B.; Smeets, M.A.M.; Semin, G.R. Rapid stress system drives chemical transfer of fear from sender to receiver. PLoS ONE 2015, 10, e0118211. [Google Scholar] [CrossRef] [PubMed]
- Wijsman, J.; Grundlehner, B.; Liu, H.; Hermens, H.; Penders, J. Towards Mental Stress Detection Using Wearable Physiological Sensors. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, Boston, MA, USA, 30 August–3 September 2011; pp. 1798–1801. [Google Scholar] [CrossRef]
- Mohan, A.M.V.; Rajendran, V.; Mishra, R.K.; Jayaraman, M. Recent advances and perspectives in sweat based wearable electrochemical sensors. TrAC Trends Anal. Chem. 2020, 131, 116024. [Google Scholar] [CrossRef]
- Kamei, T.; Tsuda, T.; Kitagawa, S.; Naitoh, K.; Nakashima, K.; Ohhashi, T. Physical stimuli and emotional stress-induced sweat secretions in the human palm and forehead. Anal. Chim. Acta 1998, 365, 319–326. [Google Scholar] [CrossRef]
- García-Cortés, A.; Martí, J.; Sayago, I.; Santos, J.P.; Gutiérrez, J.; Horrillo, M.C. Detection of stress through sweat analysis with an electronic nose. In Proceedings of the 2009 Spanish Conference on Electron Devices CDE’09, Santiago de Compostela, Spain, 11–13 February 2009; pp. 338–341. [Google Scholar] [CrossRef]
- Can, Y.S.; Arnrich, B.; Ersoy, C. Stress detection in daily life scenarios using smart phones and wearable sensors: A survey. J. Biomed. Inform. 2019, 92, 103139. [Google Scholar] [CrossRef]
- Karthikeyan, P.; Murugappan, M.; Yaacob, S. Multiple Physiological Signal-Based Human Stress Identification Using Non-Linear Classifiers. Elektron. Elektrotechnika 2013, 80–85. [Google Scholar] [CrossRef]
- Wei, C. Stress Emotion Recognition Based on RSP and EMG Signals. Adv. Mater. Res. 2013, 709, 827–831. [Google Scholar] [CrossRef]
- Van Dooren, M.; de Vries, J.J.G.G.J.; Janssen, J.H. Emotional sweating across the body: Comparing 16 different skin conductance measurement locations. Physiol. Behav. 2012, 106, 298–304. [Google Scholar] [CrossRef]
- Paper, D. Hands-On Scikit-Learn for Machine Learning Applications, 1st ed.; Apress: Logan, UT, USA, 2020; pp. 71–104. ISBN 978-1-4842-5373-1. [Google Scholar] [CrossRef]
- Malo Salavarrieta, D.A.; Cáceres Cáceres, G.S.; Peña Ballesteros, G.H. Validación del inventinventario SISCO del estrés académico y análisis comparativo en adultos jóvenes de la Universidad Industrial de Santander y la Universidad Pontificia Bolivariana, Seccional Bucaramanga, Colombia. Prax. Investig. ReDIE Rev. Electrónica Red Durango Investig. Educ. 2010, 2, 26–42. [Google Scholar]
- Ancajima Carranza, L.d.P. Propiedades Psicométricas del Inventario SISCO del Estrés Académico en Universitarios de la Ciudad de Trujillo; Universidad Cesar Vallejo: Trujillo, Peru, 2017. [Google Scholar]
- Parada, R.J. Validación del Inventario SISCO del Estrés Académico en Adultos Jóvenes de la Universidad Pontificia Bolivariana, Seccional Bucaramanga; Universidad Pontificia Bolivariana: Medellín, Colombia, 2013. [Google Scholar]
- Gungor, S.; Storm, H.; Bae, J.J.; Rotundo, V.; Christos, P.J. The effect of emotional stressors on postoperative skin conductance indices: A prospective cohort pilot study. Braz. J. Anesthesiol. (Engl. Ed.) 2020, 70, 325–332. [Google Scholar] [CrossRef]
- Wilson, A.D. Advances in electronic-nose technologies for the detection of volatile biomarker metabolites in the human breath. Metabolites 2015, 5, 140–163. [Google Scholar] [CrossRef] [PubMed]
- Salman, A.; Iqbal, J.; Izhar, U.; Khan, U.S.; Rashid, N. Optimized circuit for EMG signal processing. In Proceedings of the 2012 International Conference of Robotics and Artificial Intelligence, ICRAI 2012, Rawalpindi, Pakistan, 22–23 October 2012; pp. 208–213. [Google Scholar] [CrossRef]
- Ahamed, M.A.; Asraf-Ul-Ahad, M.; Sohag, M.H.A.; Ahmad, M. Development of low cost wireless biosignal acquisition system for ECG, EMG and EOG data acquisition system. In Proceedings of the 2015 3rd International Conference on Advances in Electrical Engineering, ICAEE 2015, Dhaka, Bangladesh, 17–19 December 2015; pp. 72–75. [Google Scholar] [CrossRef]
- Coughlin, R.F.; Driscoll, F.F. Amplificadores Operacionales y Circuitos Integrados Lineales; Hsipoanoamericana, Prentice-Hall: Mexico City, Mexico; Washington, DC, USA, 1993; pp. 294–330. ISBN 968 880 284 0. [Google Scholar]
- Recommendations for Sensor Locations in Shoulder or Neck Muscles. Available online: http://www.seniam.org/trapeziusdescendens.html (accessed on 4 November 2020).
- Greene, S.; Thapliyal, H.; Caban-Holt, A. A Survey of Affective Computing for Stress Detection. IEEE Consum. Electron. Mag. 2016, 5, 44–56. [Google Scholar] [CrossRef]
- Sioni, R.; Chittaro, L. Stress Detection Using Physiological Sensors. Computer 2015, 48, 26–33. [Google Scholar] [CrossRef]
- Zhang, D.; Jing, X.-Y.; Yang, J. Linear Discriminant Analysis. Biom. Image Discrim. Technol. 2011, 27–33. [Google Scholar] [CrossRef]
- Kaya, S.; Cicioǧlu Aridoǧan, B.; Demirci, M. Linear discriminant analysis. Mikrobiyol. Bul. 2004, 38, 421–427. [Google Scholar] [PubMed]
- Tharwat, A.; Gaber, T.; Ibrahim, A.; Hassanien, A.E. Linear discriminant analysis: A detailed tutorial. AI Commun. 2017, 30, 169–190. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Cai, Z.; Wang, D.; Jiang, S. Survey of improving K-nearest-neighbor for classification. In Proceedings of the Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007), Haikou, China, 24–27 August 2007; pp. 679–683. [Google Scholar] [CrossRef]
- Zhang, Z. Introduction to machine learning: K-nearest neighbors. Ann. Transl. Med. 2016, 4, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Andreola, R. Support Vector Machines. R-News 2009, 16, 130. [Google Scholar]
- Hearst, M.A.; Scholkopf, B.; Dumais, S.; Osuna, E.; Platt, J. Supprot vector machines. IEEE Intell. Syst. Their Appl. 1998, 13, 18–28. [Google Scholar] [CrossRef] [Green Version]
- Auria, L.; Moro, R.A. Support Vector Machines (SVM) as a Technique for Solvency Analysis. SSRN Electron. J. 2011. [Google Scholar] [CrossRef] [Green Version]
- Macías, A.B. El Inventario SISCO del Estrés Académico. Investig. Educ. Duranguense 2007, 7, 90–93. [Google Scholar]
- Phinyomark, A.; Phukpattaranont, P.; Limsakul, C. Feature reduction and selection for EMG signal classification. Expert Syst. Appl. 2012, 39, 7420–7431. [Google Scholar] [CrossRef]
- Negi, S.; Kumar, Y.; Mishra, V.M. Feature extraction and classification for EMG signals using linear discriminant analysis. In Proceedings of the 2016 2nd International Conference on Advances in Computing, Communication, & Automation (ICACCA) (Fall), Bareilly, India, 30 September–1 October 2016. [Google Scholar] [CrossRef]
- Phinyomark, A.; Quaine, F.; Charbonnier, S.; Serviere, C.; Tarpin-Bernard, F.; Laurillau, Y. Feature extraction of the first difference of EMG time series for EMG pattern recognition. Comput. Methods Programs Biomed. 2014, 117, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Durán Acevedo, C.M.; Cuastumal, C. Wireless system for the detection and monitoring of diseases through exhaled breath. In Proceedings of the 2017 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), Ixtapa, Mexico, 8–10 November 2017. [Google Scholar] [CrossRef]
- Łagód, G.; Duda, S.M.; Majerek, D.; Szutt, A.; Dołhańczuk-Śródka, A. Application of electronic nose for evaluation of wastewater treatment process effects at full-scale WWTP. Processes 2019, 7, 251. [Google Scholar] [CrossRef] [Green Version]
- Bonah, E.; Huang, X.; Yi, R.; Aheto, J.H.; Osae, R.; Golly, M. Electronic nose classification and differentiation of bacterial foodborne pathogens based on support vector machine optimized with particle swarm optimization algorithm. J. Food Process Eng. 2019, 42, 1–12. [Google Scholar] [CrossRef]
- Campbell, J.; Ehlert, U. Acute psychosocial stress: Does the emotional stress response correspond with physiological responses? Psychoneuroendocrinology 2012, 37, 1111–1134. [Google Scholar] [CrossRef] [PubMed]
- Chida, Y.; Hamer, M. Chronic Psychosocial Factors and Acute Physiological Responses to Laboratory-Induced Stress in Healthy Populations: A Quantitative Review of 30 Years of Investigations. Psychol. Bull. 2008, 134, 829–885. [Google Scholar] [CrossRef]
- Ahuja, R.; Banga, A. Mental stress detection in university students using machine learning algorithms. Procedia Comput. Sci. 2019, 152, 349–353. [Google Scholar] [CrossRef]
- Jeroh, O.E.; Powers, L.S.; Roveda, J.M. Determination of Stress in Humans using Data Fusion of Off-the-Shelf Wearable Sensors Data for Electrocardiogram and Galvanic Skin Response. J. Biomed. Sci. 2018, 7, 11. [Google Scholar] [CrossRef]
- Posada-Quintero, H.F.; Chon, K.H. Innovations in Electrodermal Activity Data Collection and Signal Processing: A Systematic Review. Sensors 2020, 20, 479. [Google Scholar] [CrossRef] [Green Version]
No. | Label | Age | Gender |
---|---|---|---|
1 | A | 22 | Male |
2 | B | 25 | Male |
3 | C | 19 | Female |
4 | D | 18 | Male |
5 | E | 25 | Male |
6 | F | 24 | Female |
7 | G | 23 | Male |
8 | H | 21 | Male |
9 | I | 20 | Male |
10 | J | 24 | Male |
11 | K | 27 | Male |
12 | L | 21 | Female |
13 | M | 26 | Male |
14 | N | 24 | Male |
15 | O | 23 | Male |
16 | P | 24 | Male |
17 | Q | 23 | Male |
18 | R | 23 | Female |
19 | S | 30 | Female |
20 | T | 24 | Female |
21 | U | 23 | Male |
22 | V | 23 | Male |
23 | W | 24 | Male |
24 | X | 20 | Female |
25 | Y | 22 | Male |
Label | Sensor Reference | Specific Targets |
---|---|---|
S1 | MQ2 | Propane, Methane, Alcohol, Hydrogen |
S2 | MQ3 | Alcohol, Benzine, CO, CH4 |
S3 | MQ4 | Methane, Natural Gas |
S4 | MQ5 | Natural Gas, GLP |
S5 | MQ9 | CO, Flammable gas |
S6 | MQ138 | Toluene, Acetone, Ethanol, and Formaldehyde |
S7 | TGS825 | Hydrogen sulfide |
S8 | TGS832 | Chlorofluorocarbons |
Student | SISCO | GSR | ||
---|---|---|---|---|
Score | Stress Level | Sensitivity | Stress Level | |
A | 46 | Moderate | 0.23560 | Moderate |
B | 70 | Deep | 0.36670 | Deep |
C | 66 | Deep | 0.32986 | Moderate |
D | 46 | Moderate | 0.21543 | Moderate |
E | 44 | Moderate | 0.22256 | Moderate |
F | 63 | Moderate | 0.32087 | Moderate |
G | 35 | Moderate | 0.28092 | Moderate |
H | 74 | Deep | 0.45831 | Deep |
I | 51 | Moderate | 0.27593 | Moderate |
J | 66 | Deep | 0.34669 | Deep |
K | 45 | Moderate | 0.25159 | Moderate |
L | 71 | Deep | 0.37501 | Deep |
M | 31 | Mild | 0.12581 | Mild |
N | 63 | Moderate | 0.23650 | Moderate |
O | 44 | Moderate | 0.19235 | Moderate |
P | 61 | Moderate | 0.21188 | Moderate |
Q | 73 | Deep | 0.34540 | Deep |
R | 72 | Deep | 0.36484 | Deep |
S | 54 | Moderate | 0.30226 | Moderate |
T | 52 | Moderate | 0.26412 | Moderate |
U | 41 | Moderate | 0.29144 | Moderate |
V | 49 | Moderate | 0.26504 | Moderate |
W | 68 | Deep | 0.49330 | Deep |
X | 57 | Moderate | 0.33670 | Deep |
Y | 45 | Moderate | 0.24072 | Moderate |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Durán-Acevedo, C.M.; Carrillo-Gómez, J.K.; Albarracín-Rojas, C.A. Electronic Devices for Stress Detection in Academic Contexts during Confinement Because of the COVID-19 Pandemic. Electronics 2021, 10, 301. https://doi.org/10.3390/electronics10030301
Durán-Acevedo CM, Carrillo-Gómez JK, Albarracín-Rojas CA. Electronic Devices for Stress Detection in Academic Contexts during Confinement Because of the COVID-19 Pandemic. Electronics. 2021; 10(3):301. https://doi.org/10.3390/electronics10030301
Chicago/Turabian StyleDurán-Acevedo, Cristhian Manuel, Jeniffer Katerine Carrillo-Gómez, and Camilo Andrés Albarracín-Rojas. 2021. "Electronic Devices for Stress Detection in Academic Contexts during Confinement Because of the COVID-19 Pandemic" Electronics 10, no. 3: 301. https://doi.org/10.3390/electronics10030301
APA StyleDurán-Acevedo, C. M., Carrillo-Gómez, J. K., & Albarracín-Rojas, C. A. (2021). Electronic Devices for Stress Detection in Academic Contexts during Confinement Because of the COVID-19 Pandemic. Electronics, 10(3), 301. https://doi.org/10.3390/electronics10030301