Weight Quantization Retraining for Sparse and Compressed Spatial Domain Correlation Filters
Abstract
:1. Introduction
1.1. Motivation and Research Challenges
- Efficiency and Computational Complexity of Inference due to Number and Large Sizes of Spatial Domain Correlation Filters: The large size of CPR-trained templates and the number of filters required for each target, especially for out-of-plan training, make the inference phase computationally complex. This complexity increases because of certain limitations and critical requirements, such as limited available power, high throughput demand, and hard real-time processing requirements; so, sparsity can reduce workload and increase inference efficiency.
- Memory Requirement of CPR filter Weights: Full-precision filter weights have higher memory requirements, which increases with the size and number of spatial filters. In that case, memory minimization is possible through filter-weight compression.
- We need to explore compression techniques for CPR filters and improve the inference computation efficiency; however, reducing the weight precision results in the emergence of quantization error, which degrades the classification accuracy. The real challenge is to maintain the classification accuracy for assuring the maximum possible compression ratio
- To minimize the computation workload for inference without degradation in classification accuracy.
1.2. Contributions
- A Weight Quantization Retraining (WQR) (step 5 in Figure 1) method is proposed in this paper to retrain low-precision quantization weights of the CPR filter for dynamic fixed point and power-of-two (step 4 in Figure 1) quantization schemes. Further, the PSO (step 6 in Figure 1) technique is applied to optimize and .
- Log-polar and inverse log-polar transforms (step 1 in Figure 1) are introduced as the pre-processing strategies to support the low-precision CPR filter quantization.
- An analysis is performed to compare the advantages of ST filters (step 2 in Figure 1) and FT filters (step 3 in Figure 1). This analysis is further extended to each domain, either spatially-trained or frequency-trained, to investigate the comparative benefits of power-of-two (Po2) and dynamic-fixed-point (DFP) quantization schemes.
- The overall analysis compares the advantages of direct, log-polar, inverse log-polar, and WQR, which provides a better perspective.
2. Mathematical Background and Related Work
2.1. Optimal Trade-Off Maximum Average Height Correlation (OT-MACH) Filter
2.2. Eigen Maximum Average Correlation Height (EMACH) Filter
2.3. Log-Polar Transform
3. Methodology
3.1. Overview
3.2. Quantization Schemes
3.3. Retraining the CPR Filter
3.4. Geometric Transform
3.4.1. Reducing the Standard Deviation Using Log-Polar Transform
3.4.2. Reducing the Standard Deviation Using Inverse Log-Polar Transform
3.5. Configurations for Weight Quantization
4. Experimental Analysis
4.1. Experimental Setup
4.1.1. CPR Filter Implementations and Setting
4.1.2. Database
4.1.3. Evaluation Framework
4.2. Parameter Optimization
PSO-Based Optimization of and
4.3. Performance Analysis
4.3.1. Rotational Analysis
4.3.2. Scale and Moving Light Analysis
4.3.3. ROC Comparative Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Relationship between Mean Square Error and Variance of Sample and Its Quantized Version
Appendix B. Performance Tables
Bit-Width | Frequency, AUC = 0.9601852 | Spatial, AUC = 0.9555699 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Z | p-Value < | D | p-Value < | E | p-Value < | AUC | Z | p-Value < | D | p-Value < | E | p-Value < | AUC | |
1 | −0.2462 | 0.8055 | −0.2473 | 0.8047 | 10,574 | 2.20 × 10 | 0.96109 | −0.3126 | 0.7546 | −0.3114 | 0.7555 | 18,590 | 2.20 × 10 | 0.95734 |
2 | −0.3642 | 0.7157 | −0.3682 | 0.7127 | 1308 | 0.926 | 0.96099 | 2.3705 | 0.01776 | 2.3321 | 0.0197 | 7706 | 2.20 × 10 | 0.94758 |
3 | 3.9235 | 8.73 × 10 | 3.9435 | 8.03 × 10 | 3960 | 2.20 × 10 | 0.95384 | 0.22072 | 0.8253 | 0.22624 | 0.821 | 2368 | 0.1425 | 0.9551 |
4 | 4.1619 | 3.16 × 10 | 4.1554 | 3.25 × 10 | 2870 | 2.20 × 10 | 0.95552 | 0.70579 | 0.4803 | 0.71656 | 0.4736 | 2914 | 0.1435 | 0.95401 |
5 | 4.4951 | 6.95 × 10 | 4.5996 | 4.23 × 10 | 3114 | 2.20 × 10 | 0.9551 | 1.0599 | 0.2892 | 1.0428 | 0.297 | 2972 | 0.115 | 0.95325 |
6 | 4.4951 | 6.95 × 10 | 4.507 | 6.58 × 10 | 3114 | 2.20 × 10 | 0.9551 | 1.0599 | 0.2892 | 1.0751 | 0.2823 | 2972 | 0.117 | 0.95325 |
7 | 4.4951 | 6.95 × 10 | 4.398 | 1.09 × 10 | 3114 | 2.20 × 10 | 0.9551 | 1.0599 | 0.2892 | 1.0528 | 0.2924 | 2972 | 0.103 | 0.95325 |
8 | 4.4951 | 6.95 × 10 | 4.4449 | 8.79 × 10 | 3114 | 2.20 × 10 | 0.9551 | 1.0599 | 0.2892 | 1.0777 | 0.2812 | 2972 | 0.119 | 0.95325 |
9 | 4.4951 | 6.95 × 10 | 4.5224 | 6.11 × 10 | 3114 | 2.20 × 10 | 0.9551 | 1.0599 | 0.2892 | 1.0657 | 0.2866 | 2972 | 0.111 | 0.95325 |
10 | 4.4951 | 6.95 × 10 | 4.5241 | 6.06 × 10 | 3114 | 2.20 × 10 | 0.9551 | 1.0599 | 0.2892 | 1.0655 | 0.2866 | 2972 | 0.1195 | 0.95325 |
11 | 4.4951 | 6.95 × 10 | 4.5114 | 6.44 × 10 | 3114 | 2.20 × 10 | 0.9551 | 1.0599 | 0.2892 | 1.0849 | 0.278 | 2972 | 0.119 | 0.95325 |
12 | 4.4951 | 6.95 × 10 | 4.528 | 5.95 × 10 | 3114 | 2.20 × 10 | 0.9551 | 1.0599 | 0.2892 | 1.0418 | 0.2975 | 2972 | 0.1225 | 0.95325 |
13 | 4.4951 | 6.95 × 10 | 4.4079 | 1.04 × 10 | 3114 | 2.20 × 10 | 0.9551 | 1.0599 | 0.2892 | 1.0544 | 0.2917 | 2972 | 0.1245 | 0.95325 |
14 | 4.4951 | 6.95 × 10 | 4.4938 | 7.00 × 10 | 3114 | 2.20 × 10 | 0.9551 | 1.0599 | 0.2892 | 1.0746 | 0.2826 | 2972 | 0.1355 | 0.95325 |
15 | 4.4951 | 6.95 × 10 | 4.4672 | 7.93 × 10 | 3114 | 2.20 × 10 | 0.9551 | 1.0599 | 0.2892 | 1.0528 | 0.2924 | 2972 | 0.1175 | 0.95325 |
16 | 4.4951 | 6.95 × 10 | 4.3845 | 1.16 × 10 | 3114 | 2.20 × 10 | 0.9551 | 1.0599 | 0.2892 | 1.0692 | 0.285 | 2972 | 0.1275 | 0.95325 |
Mean | 3.838516 | 0.0950876 | 3.829514 | 0.0948503 | 3505 | 0.057875 | 0.955788 | 0.981449 | 0.346773 | 0.982549 | 0.345194 | 4202.625 | 0.1073125 | 0.953317 |
Bit-Width | Frequency, AUC = 0.9601852 | Spatial, AUC = 0.9555699 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Z | p-Value < | D | p-Value < | E | p-Value < | AUC | Z | p-Value < | D | p-Value < | E | p-Value < | AUC | |
1 | −0.2462 | 0.8055 | −0.2416 | 0.8057 | 10,574 | 2.20 × 10 | 0.96109 | −0.2921 | 0.7702 | −0.2986 | 0.7652 | 18,644 | 2.20 × 10 | 0.95722 |
2 | −0.3642 | 0.7157 | −0.3621 | 0.7152 | 1308 | 0.9285 | 0.96099 | −2.859 | 0.00425 | −2.859 | 0.00425 | 5890 | 2.20 × 10 | 0.96201 |
3 | 3.6811 | 0.000232 | 3.6785 | 0.000235 | 3244 | 5.00 × 10 | 0.95496 | −1.4347 | 0.1514 | −1.4309 | 0.1525 | 2878 | 0.0075 | 0.95799 |
4 | 5.7414 | 9.39 × 10 | 5.6051 | 2.08 × 10 | 4800 | 2.20 × 10 | 0.95186 | −2.1165 | 0.0343 | −2.0812 | 0.03742 | 3076 | 0.0015 | 0.95884 |
5 | 5.3215 | 1.03 × 10 | 5.1707 | 2.33 × 10 | 4794 | 2.20 × 10 | 0.95198 | −1.9785 | 0.04788 | −2 | 0.0455 | 3212 | 2.20 × 10 | 0.95862 |
6 | 5.7997 | 6.65 × 10 | 5.7624 | 8.30 × 10 | 3984 | 2.20 × 10 | 0.95311 | −2.9184 | 0.00352 | −3.0227 | 0.00251 | 2062 | 0.003 | 0.95907 |
7 | 6.2809 | 3.37 × 10 | 5.9641 | 2.46 × 10 | 4038 | 2.20 × 10 | 0.953 | −2.5313 | 0.01136 | −2.6258 | 0.00865 | 1806 | 0.0165 | 0.95855 |
8 | 6.6003 | 4.10 × 10 | 6.549 | 5.79 × 10 | 4202 | 2.20 × 10 | 0.95272 | −3.2168 | 0.0013 | −3.1945 | 0.0014 | 2254 | 5.00 × 10 | 0.95951 |
9 | 6.7322 | 1.67 × 10 | 6.6732 | 2.50 × 10 | 4326 | 2.20 × 10 | 0.9525 | −1.5704 | 0.1163 | −1.5638 | 0.1179 | 1144 | 0.1025 | 0.95736 |
10 | 6.7452 | 1.53 × 10 | 6.7872 | 1.14 × 10 | 4296 | 2.20 × 10 | 0.95256 | −1.5612 | 0.1185 | −1.6002 | 0.1096 | 1134 | 0.1015 | 0.95735 |
11 | 6.7298 | 1.70 × 10 | 6.5328 | 6.46 × 10 | 4284 | 2.20 × 10 | 0.95258 | −1.5262 | 0.127 | −1.5251 | 0.1272 | 1126 | 0.1075 | 0.95731 |
12 | 6.7298 | 1.70 × 10 | 6.5587 | 5.43 × 10 | 4284 | 2.20 × 10 | 0.95258 | −1.5203 | 0.1284 | −1.5532 | 0.1204 | 1126 | 0.109 | 0.9573 |
13 | 6.7299 | 1.70 × 10 | 6.6692 | 2.57 × 10 | 4280 | 2.20 × 10 | 0.95258 | −1.4929 | 0.1355 | −1.493 | 0.1354 | 1106 | 0.106 | 0.95728 |
14 | 6.7357 | 1.63 × 10 | 6.5614 | 5.33 × 10 | 4280 | 2.20 × 10 | 0.95258 | −1.5074 | 0.1317 | −1.4917 | 0.1358 | 1110 | 0.11 | 0.95729 |
15 | 6.7343 | 1.65 × 10 | 6.5028 | 7.88 × 10 | 4280 | 2.20 × 10 | 0.95258 | −1.5041 | 0.1326 | −1.5299 | 0.126 | 1112 | 0.0985 | 0.95729 |
16 | 6.7349 | 1.64 × 10 | 6.6145 | 3.73 × 10 | 4282 | 2.20 × 10 | 0.95258 | −1.4929 | 0.1355 | −1.4704 | 0.1415 | 1110 | 0.0935 | 0.95728 |
Mean | 5.417898 | 0.0950895 | 5.31412 | 0.0950709 | 4453.5 | 0.0580625 | 0.953766 | −1.84517 | 0.128107 | −1.85875 | 0.126951 | 3049.375 | 0.0535938 | 0.95814 |
Bit-Width | Frequency, AUC = 0.9601852 | Spatial, AUC = 0.9555699 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Z | p-Value < | D | p-Value < | E | p-Value < | AUC | Z | p-Value < | D | p-Value < | E | p-Value < | AUC | |
1 | 25.447 | 2.2 × 10 | 25.506 | 2.2 × 10 | 11,6428 | 2.2 × 10 | 0.75207 | 20.725 | 2.2 × 10 | 20.959 | 2.2 × 10 | 153,240 | 2.2 × 10 | 0.68165 |
2 | 22.362 | 2.2 × 10 | 22.256 | 2.2 × 10 | 88,130 | 2.2 × 10 | 0.80265 | 19.84 | 2.2 × 10 | 20.344 | 2.2 × 10 | 88,062 | 2.2 × 10 | 0.79816 |
3 | 19.913 | 2.2 × 10 | 20.342 | 2.2 × 10 | 84,376 | 2.2 × 10 | 0.80936 | 22.533 | 2.2 × 10 | 22.49 | 2.2 × 10 | 105,932 | 2.2 × 10 | 0.76622 |
4 | 20.232 | 2.2 × 10 | 20.433 | 2.2 × 10 | 88,000 | 2.2 × 10 | 0.80289 | 19.497 | 2.2 × 10 | 19.802 | 2.2 × 10 | 83,184 | 2.2 × 10 | 0.80688 |
5 | 20.223 | 2.2 × 10 | 19.888 | 2.2 × 10 | 88,022 | 2.2 × 10 | 0.80285 | 19.508 | 2.2 × 10 | 19.398 | 2.2 × 10 | 83,272 | 2.2 × 10 | 0.80672 |
6 | 20.223 | 2.2 × 10 | 20.225 | 2.2 × 10 | 88,022 | 2.2 × 10 | 0.80285 | 19.508 | 2.2 × 10 | 19.584 | 2.2 × 10 | 83,272 | 2.2 × 10 | 0.80672 |
7 | 20.223 | 2.2 × 10 | 19.875 | 2.2 × 10 | 88,022 | 2.2 × 10 | 0.80285 | 19.508 | 2.2 × 10 | 19.562 | 2.2 × 10 | 83,272 | 2.2 × 10 | 0.80672 |
8 | 20.223 | 2.2 × 10 | 20.242 | 2.2 × 10 | 88,022 | 2.2 × 10 | 0.80285 | 19.508 | 2.2 × 10 | 18.998 | 2.2 × 10 | 83,272 | 2.2 × 10 | 0.80672 |
9 | 20.223 | 2.2 × 10 | 20.889 | 2.2 × 10 | 88,022 | 2.2 × 10 | 0.80285 | 19.508 | 2.2 × 10 | 19.222 | 2.2 × 10 | 83,272 | 2.2 × 10 | 0.80672 |
10 | 20.223 | 2.2 × 10 | 20.267 | 2.2 × 10 | 88,022 | 2.2 × 10 | 0.80285 | 19.508 | 2.2 × 10 | 19.979 | 2.2 × 10 | 83,272 | 2.2 × 10 | 0.80672 |
11 | 20.223 | 2.2 × 10 | 20.254 | 2.2 × 10 | 88,022 | 2.2 × 10 | 0.80285 | 19.508 | 2.2 × 10 | 19.242 | 2.2 × 10 | 83,272 | 2.2 × 10 | 0.80672 |
12 | 20.223 | 2.2 × 10 | 20.436 | 2.2 × 10 | 88,022 | 2.2 × 10 | 0.80285 | 19.508 | 2.2 × 10 | 19.129 | 2.2 × 10 | 83,272 | 2.2 × 10 | 0.80672 |
13 | 20.223 | 2.2 × 10 | 20.101 | 2.2 × 10 | 88,022 | 2.2 × 10 | 0.80285 | 19.508 | 2.2 × 10 | 19.363 | 2.2 × 10 | 83,272 | 2.2 × 10 | 0.80672 |
14 | 20.223 | 2.2 × 10 | 19.796 | 2.2 × 10 | 88,022 | 2.2 × 10 | 0.80285 | 19.508 | 2.2 × 10 | 19.663 | 2.2 × 10 | 83,272 | 2.2 × 10 | 0.80672 |
15 | 20.223 | 2.2 × 10 | 20.032 | 2.2 × 10 | 88,022 | 2.2 × 10 | 0.80285 | 19.508 | 2.2 × 10 | 19.576 | 2.2 × 10 | 83,272 | 2.2 × 10 | 0.80672 |
16 | 20.223 | 2.2 × 10 | 20.425 | 2.2 × 10 | 88,022 | 2.2 × 10 | 0.80285 | 19.508 | 2.2 × 10 | 19.022 | 2.2 × 10 | 83,272 | 2.2 × 10 | 0.80672 |
Mean | 20.66438 | 2.2 × 10 | 20.68544 | 2.2 × 10 | 89,574.88 | 2.2 × 10 | 0.80007 | 19.79319 | 2.2 × 10 | 19.77081 | 2.2 × 10 | 89,355.13 | 2.2 × 10 | 0.795847 |
Bit-Width | Frequency, AUC = 0.9601852 | Spatial, AUC = 0.9555699 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Z | p-Value < | D | p-Value < | E | p-Value < | AUC | Z | p-Value < | D | p-Value < | E | p-Value < | AUC | ||
1 | 25.447 | 2.2 × 10 | 25.264 | 2.2 × 10 | 116,428 | 2.2 × 10 | 0.75207 | 21.279 | 2.2 × 10 | 20.926 | 2.2 × 10 | 103,956 | 2.2 × 10 | 0.76975 | |
2 | 22.362 | 2.2 × 10 | 22.913 | 2.2 × 10 | 88,130 | 2.2 × 10 | 0.80265 | 17.184 | 2.2 × 10 | 17.45 | 2.2 × 10 | 89,472 | 2.2 × 10 | 0.79564 | |
3 | 20.371 | 2.2 × 10 | 20.187 | 2.2 × 10 | 92,402 | 2.2 × 10 | 0.79502 | 22.68 | 2.2 × 10 | 22.463 | 2.2 × 10 | 105,502 | 2.2 × 10 | 0.76698 | |
4 | 19.357 | 2.2 × 10 | 18.697 | 2.2 × 10 | 84,746 | 2.2 × 10 | 0.8087 | 22.86 | 2.2 × 10 | 23.514 | 2.2 × 10 | 107,350 | 2.2 × 10 | 0.76368 | |
5 | 19.574 | 2.2 × 10 | 19.717 | 2.2 × 10 | 87,790 | 2.2 × 10 | 0.80326 | 19.466 | 2.2 × 10 | 19.577 | 2.2 × 10 | 85,634 | 2.2 × 10 | 0.8025 | |
6 | 19.589 | 2.2 × 10 | 19.444 | 2.2 × 10 | 86,792 | 2.2 × 10 | 0.80504 | 19.242 | 2.2 × 10 | 18.842 | 2.2 × 10 | 85,456 | 2.2 × 10 | 0.80282 | |
7 | 19.501 | 2.2 × 10 | 20.113 | 2.2 × 10 | 86,834 | 2.2 × 10 | 0.80497 | 19.386 | 2.2 × 10 | 19.155 | 2.2 × 10 | 86,260 | 2.2 × 10 | 0.80138 | |
8 | 19.554 | 2.2 × 10 | 19.13 | 2.2 × 10 | 86,842 | 2.2 × 10 | 0.80496 | 19.361 | 2.2 × 10 | 19.45 | 2.2 × 10 | 86,204 | 2.2 × 10 | 0.80148 | |
9 | 19.532 | 2.2 × 10 | 19.15 | 2.2 × 10 | 86,844 | 2.2 × 10 | 0.80495 | 19.341 | 2.2 × 10 | 18.899 | 2.2 × 10 | 86,280 | 2.2 × 10 | 0.80134 | |
10 | 19.511 | 2.2 × 10 | 19.569 | 2.2 × 10 | 86,824 | 2.2 × 10 | 0.80499 | 19.352 | 2.2 × 10 | 19.555 | 2.2 × 10 | 86,256 | 2.2 × 10 | 0.80139 | |
11 | 19.521 | 2.2 × 10 | 19.997 | 2.2 × 10 | 86,818 | 2.2 × 10 | 0.805 | 19.349 | 2.2 × 10 | 19.403 | 2.2 × 10 | 86,252 | 2.2 × 10 | 0.80139 | |
12 | 19.517 | 2.2 × 10 | 19.707 | 2.2 × 10 | 86,814 | 2.2 × 10 | 0.80501 | 19.35 | 2.2 × 10 | 18.871 | 2.2 × 10 | 86,270 | 2.2 × 10 | 0.80136 | |
13 | 19.524 | 2.2 × 10 | 20.022 | 2.2 × 10 | 86,822 | 2.2 × 10 | 0.80499 | 19.349 | 2.2 × 10 | 19.742 | 2.2 × 10 | 86,250 | 2.2 × 10 | 0.8014 | |
14 | 19.523 | 2.2 × 10 | 19.428 | 2.2 × 10 | 86,824 | 2.2 × 10 | 0.80499 | 19.35 | 2.2 × 10 | 19.257 | 2.2 × 10 | 86,254 | 2.2 × 10 | 0.80139 | |
15 | 19.523 | 2.2 × 10 | 19.449 | 2.2 × 10 | 86,824 | 2.2 × 10 | 0.80499 | 19.348 | 2.2 × 10 | 19.831 | 2.2 × 10 | 86,254 | 2.2 × 10 | 0.80139 | |
16 | 19.524 | 2.2 × 10 | 19.354 | 2.2 × 10 | 86,822 | 2.2 × 10 | 0.80499 | 19.35 | 2.2 × 10 | 19.033 | 2.2 × 10 | 86,254 | 2.2 × 10 | 0.80139 | |
Mean | 20.12063 | 2.2 × 10 | 20.13381 | 2.2 × 10 | 89,034.75 | 2.2 × 10 | 0.801035 | 19.76544 | 2.2 × 10 | 19.748 | 2.2 × 10 | 89,994 | 2.2 × 10 | 0.794705 |
Bit-Width | Frequency, AUC = 0.9601852 | Spatial, AUC = 0.9555699 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Z | p-Value < | D | p-Value < | E | p-Value < | AUC | Z | p-Value < | D | p-Value < | E | p-Value < | AUC | |
1 | 10.459 | 2.20 × 10 | 10.252 | 2.20 × 10 | 32,948 | 2.20 × 10 | 0.90151 | 10.272 | 2.20 × 10 | 10.455 | 2.20 × 10 | 34,392 | 2.20 × 10 | 0.89409 |
2 | 12.387 | 2.20 × 10 | 12.347 | 2.20 × 10 | 35,646 | 2.20 × 10 | 0.89647 | 10.788 | 2.20 × 10 | 10.76 | 2.20 × 10 | 32,438 | 2.20 × 10 | 0.89759 |
3 | 11.824 | 2.20 × 10 | 11.667 | 2.20 × 10 | 33,776 | 2.20 × 10 | 0.89981 | 10.396 | 2.20 × 10 | 10.596 | 2.20 × 10 | 30,954 | 2.20 × 10 | 0.90024 |
4 | 12.313 | 2.20 × 10 | 12.229 | 2.20 × 10 | 34,682 | 2.20 × 10 | 0.89819 | 10.134 | 2.20 × 10 | 10.34 | 2.20 × 10 | 31,348 | 2.20 × 10 | 0.89954 |
5 | 12.447 | 2.20 × 10 | 12.339 | 2.20 × 10 | 36,004 | 2.20 × 10 | 0.89583 | 10.288 | 2.20 × 10 | 10.255 | 2.20 × 10 | 31,156 | 2.20 × 10 | 0.89988 |
6 | 12.447 | 2.20 × 10 | 12.526 | 2.20 × 10 | 36,004 | 2.20 × 10 | 0.89583 | 10.288 | 2.20 × 10 | 10.625 | 2.20 × 10 | 31,156 | 2.20 × 10 | 0.89988 |
7 | 12.447 | 2.20 × 10 | 12.32 | 2.20 × 10 | 36,004 | 2.20 × 10 | 0.89583 | 10.288 | 2.20 × 10 | 10.288 | 2.20 × 10 | 31,156 | 2.20 × 10 | 0.89988 |
8 | 12.447 | 2.20 × 10 | 12.501 | 2.20 × 10 | 36,004 | 2.20 × 10 | 0.89583 | 10.288 | 2.20 × 10 | 10.325 | 2.20 × 10 | 31,156 | 2.20 × 10 | 0.89988 |
9 | 12.447 | 2.20 × 10 | 12.128 | 2.20 × 10 | 36,004 | 2.20 × 10 | 0.89583 | 10.288 | 2.20 × 10 | 10.421 | 2.20 × 10 | 31,156 | 2.20 × 10 | 0.89988 |
10 | 12.447 | 2.20 × 10 | 12.447 | 2.20 × 10 | 36,004 | 2.20 × 10 | 0.89583 | 10.288 | 2.20 × 10 | 10.31 | 2.20 × 10 | 31,156 | 2.20 × 10 | 0.89988 |
11 | 12.447 | 2.20 × 10 | 12.514 | 2.20 × 10 | 36,004 | 2.20 × 10 | 0.89583 | 10.288 | 2.20 × 10 | 10.088 | 2.20 × 10 | 31,156 | 2.20 × 10 | 0.899878 |
12 | 12.447 | 2.20 × 10 | 12.886 | 2.20 × 10 | 36,004 | 2.20 × 10 | 0.89583 | 10.288 | 2.20 × 10 | 10.367 | 2.20 × 10 | 31,156 | 2.20 × 10 | 0.89988 |
13 | 12.447 | 2.20 × 10 | 12.793 | 2.20 × 10 | 36,004 | 2.20 × 10 | 0.89583 | 10.288 | 2.20 × 10 | 10.008 | 2.20 × 10 | 31,156 | 2.20 × 10 | 0.89988 |
14 | 12.447 | 2.20 × 10 | 12.634 | 2.20 × 10 | 36,004 | 2.20 × 10 | 0.89583 | 10.288 | 2.20 × 10 | 10.069 | 2.20 × 10 | 31,156 | 2.20 × 10 | 0.89988 |
15 | 12.447 | 2.20 × 10 | 12.501 | 2.20 × 10 | 36,004 | 2.20 × 10 | 0.89583 | 10.288 | 2.20 × 10 | 10.538 | 2.20 × 10 | 31,156 | 2.20 × 10 | 0.89988 |
16 | 12.447 | 2.20 × 10 | 12.731 | 2.20 × 10 | 36,004 | 2.20 × 10 | 0.89583 | 10.288 | 2.20 × 10 | 10.458 | 2.20 × 10 | 31,156 | 2.20 × 10 | 0.89988 |
Mean | 12.27169 | 2.2 × 10 | 12.30094 | 2.2 × 10 | 35,568.75 | 2.2 × 10 | 0.896619 | 10.31538 | 2.2 × 10 | 10.36894 | 2.2 × 10 | 31,437.75 | 1.52778 × 10 | 0.899375 |
Bit-Width | Frequency, AUC = 0.9601852 | Spatial, AUC = 0.9555699 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Z | p-Value < | D | p-Value < | E | p-Value < | AUC | Z | p-Value < | D | p-Value < | E | p-Value < | AUC | |
1 | 10.459 | 2.2 × 10 | 10.465 | 2.2 × 10 | 32,948 | 2.20 × 10 | 0.90151 | 9.3355 | 2.2 × 10 | 9.3886 | 2.2 × 10 | 31,530 | 2.20 × 10 | 0.900483 |
2 | 12.387 | 2.2 × 10 | 12.36 | 2.2 × 10 | 35,646 | 2.20 × 10 | 0.89647 | 11.028 | 2.2 × 10 | 10.887 | 2.2 × 10 | 32,748 | 2.20 × 10 | 0.897033 |
3 | 12.176 | 2.2 × 10 | 12.541 | 2.2 × 10 | 34,758 | 2.20 × 10 | 0.89806 | 9.7993 | 2.2 × 10 | 9.548 | 2.2 × 10 | 29,714 | 2.20 × 10 | 0.902613 |
4 | 11.198 | 2.2 × 10 | 11.251 | 2.2 × 10 | 32,150 | 2.20 × 10 | 0.90272 | 10.378 | 2.2 × 10 | 10.258 | 2.2 × 10 | 31,416 | 2.20 × 10 | 0.899414 |
5 | 12.397 | 2.2 × 10 | 12.222 | 2.2 × 10 | 36,440 | 2.20 × 10 | 0.89505 | 9.7374 | 2.2 × 10 | 9.6062 | 2.2 × 10 | 29,964 | 2.20 × 10 | 0.902131 |
6 | 12.41 | 2.2 × 10 | 12.462 | 2.2 × 10 | 35,888 | 2.20 × 10 | 0.89604 | 9.7943 | 2.2 × 10 | 9.6758 | 2.2 × 10 | 29,980 | 2.20 × 10 | 0.902088 |
7 | 12.128 | 2.2 × 10 | 11.943 | 2.2 × 10 | 34,146 | 2.20 × 10 | 0.89915 | 10.011 | 2.2 × 10 | 10.015 | 2.2 × 10 | 30,208 | 2.20 × 10 | 0.901573 |
8 | 12.689 | 2.2 × 10 | 12.435 | 2.2 × 10 | 37,076 | 2.20 × 10 | 0.89391 | 10.179 | 2.2 × 10 | 10.241 | 2.2 × 10 | 31,246 | 2.20 × 10 | 0.899718 |
9 | 12.677 | 2.2 × 10 | 12.947 | 2.2 × 10 | 36,890 | 2.20 × 10 | 0.89424 | 10.071 | 2.2 × 10 | 9.8498 | 2.2 × 10 | 30,332 | 2.20 × 10 | 0.901351 |
10 | 12.769 | 2.2 × 10 | 12.823 | 2.2 × 10 | 37,116 | 2.20 × 10 | 0.89384 | 10.144 | 2.2 × 10 | 9.6202 | 2.2 × 10 | 30,474 | 2.20 × 10 | 0.901098 |
11 | 12.686 | 2.2 × 10 | 12.723 | 2.2 × 10 | 35,874 | 2.20 × 10 | 0.89606 | 10.106 | 2.2 × 10 | 9.9334 | 2.2 × 10 | 30,412 | 2.20 × 10 | 0.901208 |
12 | 12.689 | 2.2 × 10 | 12.54 | 2.2 × 10 | 35,888 | 2.20 × 10 | 0.89604 | 10.112 | 2.2 × 10 | 9.9988 | 2.2 × 10 | 30,416 | 2.20 × 10 | 0.901201 |
13 | 12.692 | 2.2 × 10 | 12.417 | 2.2 × 10 | 35,884 | 2.20 × 10 | 0.89604 | 10.107 | 2.2 × 10 | 10.105 | 2.2 × 10 | 30,406 | 2.20 × 10 | 0.901219 |
14 | 12.689 | 2.2 × 10 | 12.831 | 2.2 × 10 | 35,872 | 2.20 × 10 | 0.89606 | 10.107 | 2.2 × 10 | 10.377 | 2.2 × 10 | 30,410 | 2.20 × 10 | 0.901212 |
15 | 12.691 | 2.2 × 10 | 12.605 | 2.2 × 10 | 35,876 | 2.20 × 10 | 0.89606 | 10.107 | 2.2 × 10 | 9.6937 | 2.2 × 10 | 30,410 | 2.20 × 10 | 0.901212 |
16 | 12.689 | 2.2 × 10 | 13.224 | 2.2 × 10 | 35,872 | 2.20 × 10 | 0.89606 | 10.107 | 2.2 × 10 | 10.28 | 2.2 × 10 | 30,408 | 2.20 × 10 | 0.901216 |
Mean | 12.33913 | 2.2 × 10 | 12.36181 | 2.2 × 10 | 35,520.25 | 2.2 × 10 | 0.896706 | 10.07022 | 2.2 × 10 | 9.967344 | 2.2 × 10 | 30,629.63 | 2.2 × 10 | 0.900923 |
Bit-Width | Spatial, AUC = 0.9555699 | ||||||
---|---|---|---|---|---|---|---|
Z | p-Value < | D | p-Value < | E | p-Value < | AUC | |
1 | −1.484 | 0.1378 | −1.5176 | 0.1291 | 11,484 | 2.20 × 10 | 0.9614257 |
2 | −1.3442 | 0.1789 | −1.3351 | 0.1819 | 4444 | 0.0055 | 0.9589876 |
3 | −1.4954 | 0.1348 | −1.4923 | 0.1356 | 3618 | 0.028 | 0.9592128 |
4 | −2.4204 | 0.0155 | −2.4541 | 0.01412 | 4054 | 0.005 | 0.961272 |
5 | −3.6926 | 0.000222 | −3.7461 | 0.00018 | 5778 | 2.20 × 10 | 0.9645181 |
6 | −2.2286 | 0.02584 | −2.2825 | 0.02246 | 3724 | 0.009 | 0.9606535 |
7 | −3.2514 | 0.00115 | −3.2259 | 0.00126 | 5118 | 2.20 × 10 | 0.9633884 |
8 | −1.9956 | 0.04598 | −2.0536 | 0.04001 | 3674 | 0.0155 | 0.9602138 |
9 | −1.9956 | 0.04598 | −2.003 | 0.04518 | 3674 | 0.0165 | 0.9602138 |
10 | −1.9956 | 0.04598 | −2.0175 | 0.04364 | 3674 | 0.0155 | 0.9602138 |
11 | −1.9956 | 0.04598 | −2.0453 | 0.04082 | 3674 | 0.009 | 0.9602138 |
12 | −1.9956 | 0.04598 | −1.9694 | 0.0489 | 3674 | 0.016 | 0.9602138 |
13 | −1.9956 | 0.04598 | −1.9812 | 0.04757 | 3674 | 0.014 | 0.9602138 |
14 | −1.9966 | 0.04587 | −1.9966 | 0.04587 | 3674 | 0.01 | 0.9602138 |
15 | −1.9956 | 0.04598 | −1.9794 | 0.04777 | 3674 | 0.0125 | 0.9602138 |
16 | −1.9956 | 0.04598 | −2.0171 | 0.04368 | 3674 | 0.0115 | 0.9602138 |
Mean | −2.11738 | 0.056745 | −2.13229 | 0.055503 | 4455.375 | 0.0105 | 0.960711394 |
Bit-Width | Spatial, AUC = 0.9555699 | ||||||
---|---|---|---|---|---|---|---|
Z | p-Value < | D | p-Value < | E | p-Value < | AUC | |
1 | −0.84641 | 0.3973 | −0.84277 | 0.3994 | 11,650 | 2.20 × 10 | 0.95901 |
2 | −1.6187 | 0.1055 | −1.6063 | 0.1082 | 5118 | 2.20 × 10 | 0.95978 |
3 | −1.6091 | 0.1076 | −1.607 | 0.1081 | 3542 | 0.007 | 0.95882 |
4 | 0.17147 | 0.8639 | 0.17203 | 0.8634 | 2644 | 0.0645 | 0.95524 |
5 | 2.6438 | 0.008199 | 2.6344 | 0.008428 | 3636 | 0.0095 | 0.94999 |
6 | 4.2815 | 1.86 × 10 | 4.1887 | 2.81 × 10 | 10,824 | 2.20 × 10 | 0.93636 |
7 | 4.2447 | 2.19 × 10 | 4.2655 | 2.00 × 10 | 10,374 | 2.20 × 10 | 0.93725 |
8 | −0.5619 | 0.5742 | −0.5581 | 0.5768 | 2694 | 0.024 | 0.9566 |
9 | −0.3745 | 0.708 | −0.3739 | 0.7085 | 2442 | 0.053 | 0.95627 |
10 | −0.3324 | 0.7396 | −0.3411 | 0.733 | 2492 | 0.054 | 0.95619 |
11 | −0.3081 | 0.758 | −0.3148 | 0.7529 | 2474 | 0.0545 | 0.95615 |
12 | −0.3238 | 0.7461 | −0.3141 | 0.7535 | 2490 | 0.0535 | 0.95617 |
13 | −0.3181 | 0.7504 | −0.3001 | 0.7641 | 2480 | 0.051 | 0.95616 |
14 | −0.3239 | 0.746 | −0.3152 | 0.7526 | 2474 | 0.054 | 0.95617 |
15 | −0.3181 | 0.7504 | −0.3222 | 0.7473 | 2480 | 0.0435 | 0.95616 |
16 | −0.322 | 0.7475 | −0.3166 | 0.7516 | 2476 | 0.0545 | 0.95617 |
Mean | 0.255282 | 0.5001712 | 0.253044 | 0.5017423 | 4393.125 | 0.0326875 | 0.953907 |
References
- Gardezi, A.; Malik, U.; Rehman, S.; Young, R.C.D.; Birch, P.M.; Chatwin, C.R. Enhanced target recognition employing spatial correlation filters and affine scale invariant feature transform. In Pattern Recognition and Tracking XXX; Alam, M.S., Ed.; International Society for Optics and Photonics, SPIE: Baltimore, MD, USA, 2019; Volume 10995, pp. 145–160. [Google Scholar] [CrossRef] [Green Version]
- Gardezi, A.; Qureshi, T.; Alkandri, A.; Young, R.C.D.; Birch, P.M.; Chatwin, C.R. Comparison of spatial domain optimal trade-off maximum average correlation height (OT-MACH) filter with scale invariant feature transform (SIFT) using images with poor contrast and large illumination gradient. In Optical Pattern Recognition XXVI; Casasent, D., Alam, M.S., Eds.; International Society for Optics and Photonics, SPIE: Baltimore, MD, USA, 2015; Volume 9477, pp. 21–35. [Google Scholar] [CrossRef] [Green Version]
- P. D., S.M.; Lin, J.; Zhu, S.; Yin, Y.; Liu, X.; Huang, X.; Song, C.; Zhang, W.; Yan, M.; Yu, Z.; Yu, H. A Scalable Network-on-Chip Microprocessor With 2.5D Integrated Memory and Accelerator. IEEE Trans. Circuits Syst. I Regul. Pap. 2017, 64, 1432–1443. [Google Scholar] [CrossRef]
- Awan, A.B.; Bakhshi, A.D.; Abbas, M.; Rehman, S. Active contour-based clutter defiance scheme for correlation filters. Electron. Lett. 2019, 55, 525–527. [Google Scholar] [CrossRef]
- Kay, S. Fundamentals of Statistical Signal Processing: Detection Theory; PTR Prentice-Hall: Upper Saddle River, NJ, USA, 1993. [Google Scholar]
- Kumar, B.V.K.V.; Pochapsky, E. Signal-to-noise ratio considerations in modified matched spatial filters. J. Opt. Soc. Am. A 1986, 3, 777–786. [Google Scholar] [CrossRef]
- Lugt, A.V. Signal detection by complex spatial filtering. IEEE Trans. Inf. Theory 1964, 10, 139–145. [Google Scholar] [CrossRef]
- Kumar, B.; Juday, R.; Mahalanobis, A. Correlation Pattern Recognition; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Psaltis, D.; Casasent, D. Position, Rotation, And Scale Invariant Optical Correlation. Appl. Opt. 1976, 15, 1795–1799. [Google Scholar] [CrossRef] [Green Version]
- Mersereau, K.; Morris, G.M. Scale, rotation, and shift invariant image recognition. Appl. Opt. 1986, 25, 2338–2342. [Google Scholar] [CrossRef] [PubMed]
- Casasent, D. Unified synthetic discriminant function computational formulation. Appl. Opt. 1984, 23, 1620–1627. [Google Scholar] [CrossRef] [PubMed]
- Kumar, B.V.K.V. Minimum-variance synthetic discriminant functions. J. Opt. Soc. Am. A 1986, 3, 1579–1584. [Google Scholar] [CrossRef]
- Bahri, Z.; Kumar, B.V.K.V. Generalized synthetic discriminant functions. J. Opt. Soc. Am. A 1988, 5, 562–571. [Google Scholar] [CrossRef]
- Casasent, D.; Chang, W.T. Correlation synthetic discriminant functions. Appl. Opt. 1986, 25, 2343–2350. [Google Scholar] [CrossRef]
- Mahalanobis, A.; Casasent, D.P. Performance evaluation of minimum average correlation energy filters. Appl. Opt. 1991, 30, 561–572. [Google Scholar] [CrossRef] [PubMed]
- Mahalanobis, A.; Kumar, B.V.K.V.; Casasent, D. Minimum average correlation energy filters. Appl. Opt. 1987, 26, 3633–3640. [Google Scholar] [CrossRef] [PubMed]
- Kumar, B.V.K.V. Tutorial survey of composite filter designs for optical correlators. Appl. Opt. 1992, 31, 4773–4801. [Google Scholar] [CrossRef] [PubMed]
- Sudharsanan, S.I.; Mahalanobis, A.; Sundareshan, M.K. Unified framework for the synthesis of synthetic discriminant functions with reduced noise variance and sharp correlation structure. Opt. Eng. 1990, 29, 1021–1028. [Google Scholar] [CrossRef]
- Alkanhal, M.; Vijaya Kumar, B.V.K.; Mahalanobis, A. Improving the false alarm capabilities of the maximum average correlation height correlation filter. Opt. Eng. 2000, 39, 1133–1141. [Google Scholar] [CrossRef]
- Alkanhal, M.; Vijaya Kumar, B.V.K.; Mahalanobis, A. Eigen-extended maximum average correlation height (EEMACH) filters for automatic target recognition. Automat. Target Recogn. 2001. [Google Scholar] [CrossRef]
- Goyal, S.; Nishchal, N.K.; Beri, V.K.; Gupta, A.K. Wavelet-modified maximum average correlation height filter for rotation invariance that uses chirp encoding in a hybrid digital-optical correlator. Appl. Opt. 2006, 45, 4850–4857. [Google Scholar] [CrossRef]
- Goyal, S.; Nishchal, N.K.; Beri, V.K.; Gupta, A.K. Wavelet-modified maximum average correlation height filter for out-of-plane rotation invariance. Optik 2009, 120, 62–67. [Google Scholar] [CrossRef]
- Ang, T.; Tan, A.W.I.; Loo, C.K.; Wong, W.K. Wavelet MACH Filter for Omnidirectional Human Activity Recognition. Int. J. Innov. Comput. Inf. Control IJICIC 2012, 8, 3565–3584. [Google Scholar]
- Rodriguez, A.; Boddeti, V.N.; Kumar, B.V.K.V.; Mahalanobis, A. Maximum Margin Correlation Filter: A New Approach for Localization and Classification. IEEE Trans. Image Process. 2013, 22, 631–643. [Google Scholar] [CrossRef]
- Fernandez, J.A.; Vijaya Kumar, B.V.K. Partial-Aliasing Correlation Filters. IEEE Trans. Signal Process. 2015, 63, 921–934. [Google Scholar] [CrossRef]
- Kiani, H.; Sim, T.; Lucey, S. Multi-channel correlation filte rs for human action recognition. In Proceedings of the 2014 IEEE International Conference on Image Processing (ICIP), Paris, France, 27–30 October 2014; pp. 1485–1489. [Google Scholar] [CrossRef] [Green Version]
- Tehsin, S.; Rehman, S.; Bilal, A.; Chaudry, Q.; Saeed, O.; Abbas, M.; Young, R. Comparative analysis of zero aliasing logarithmic mapped optimal trade-off correlation filter. In Pattern Recognition and Tracking XXVIII; Alam, M.S., Ed.; International Society for Optics and Photonics, SPIE: Anaheim, CA, USA, 2017; Volume 10203, pp. 22–37. [Google Scholar] [CrossRef]
- Tehsin, S.; Rehman, S.; Riaz, F.; Saeed, O.; Hassan, A.; Khan, M.A.; Alam, M.S. Fully invariant wavelet enhanced minimum average correlation energy filter for object recognition in cluttered and occluded environments. In Defense + Security; SPIE: Anaheim, CA, USA, 2017. [Google Scholar]
- Tehsin, S.; Rehman, S.; Saeed, M.O.B.; Riaz, F.; Hassan, A.; Abbas, M.; Young, R.; Alam, M.S. Self-Organizing Hierarchical Particle Swarm Optimization of Correlation Filters for Object Recognition. IEEE Access 2017, 5, 24495–24502. [Google Scholar] [CrossRef]
- Achuthanunni, A.; Kishore Saha, R.; Banerjee, P.K. Unconstrained Band-pass Optimized Correlation Filter (UBoCF): An application to face recognition. In Proceedings of the 2018 IEEE Applied Signal Processing Conference (ASPCON), Kolkata, India, 7–9 December 2018; pp. 297–303. [Google Scholar] [CrossRef]
- Banerjee, P.K.; Datta, A.K. Band-pass correlation filter for illumination- and noise-tolerant face recognition. SIViP 2017, 9–16. [Google Scholar] [CrossRef]
- Akbar, N.; Tehsin, S.; Bilal, A.; Rubab, S.; Rehman, S.; Young, R. Detection of moving human using optimized correlation filters in homogeneous environments. In Pattern Recognition and Tracking XXXI; Alam, M.S., Ed.; International Society for Optics and Photonics, SPIE: Baltimore, MD, USA, 2020; Volume 11400, pp. 73–79. [Google Scholar] [CrossRef]
- Akbar, N.; Tehsin, S.; ur Rehman, H.; Rehman, S.; Young, R. Hardware design of correlation filters for target detection. In Pattern Recognition and Tracking XXX; Alam, M.S., Ed. International Society for Optics and Photonics, SPIE: Baltimore, MD, United States, 2019; Volume 10995, pp. 71–79. [Google Scholar] [CrossRef]
- Masood, H.; Rehman, S.; Khan, M.; Javed, Q.; Abbas, M.; Alam, M.; Young, R. Approximate Proximal Gradient-Based Correlation Filter for Target Tracking in Videos: A Unified Approach. Arab. J. Sci. Eng. 2019, 9363–9380. [Google Scholar] [CrossRef]
- Masood, H.; Rehman, S.; Khan, M.; Javed, Q.; Abbas, M.; Alam, M.; Young, R. A novel technique for recognition and tracking of moving objects based on E-MACH and proximate gradient (PG) filters. In Proceedings of the 2017 20th International Conference of Computer and Information Technology (ICCIT), Dhaka, Bangladesh, 22–24 December 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Venkataramani, S.; Ranjan, A.; Roy, K.; Raghunathan, A. AxNN: Energy-efficient neuromorphic systems using approximate computing. In Proceedings of the 2014 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED), La Jolla, CA, USA, 11–13 August 2014; pp. 27–32. [Google Scholar]
- Rubio-González, C.; Nguyen, H.D.; Demmel, J.; Kahan, W.; Sen, K.; Bailey, D.H.; Iancu, C.; Hough, D. Precimonious: Tuning assistant for floating-point precision. In Proceedings of the SC ’13: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, Denver, CO, USA, 17–22 November 2013; pp. 1–12. [Google Scholar]
- Pandey, J.G.; Karmakar, A.; Shekhar, C.; Gurunarayanan, S. An FPGA-based fixed-point architecture for binary logarithmic computation. In Proceedings of the 2013 IEEE Second International Conference on Image Information Processing (ICIIP-2013), Shimla, India, 9–11 December 2013; pp. 383–388. [Google Scholar]
- Mahalanobis, A.; Kumar, B.V. Optimality of the maximum average correlation height filter for detection of targets in noise. Opt. Eng. 1997, 36, 2642–2648. [Google Scholar] [CrossRef]
- Mahalanobis, A.; Kumar, B.V.K.V.; Song, S.; Sims, S.R.F.; Epperson, J.F. Unconstrained correlation filters. Appl. Opt. 1994, 33, 3751–3759. [Google Scholar] [CrossRef] [PubMed]
- Sabir, D.; Rehman, S.; Hassan, A. Fully invariant quaternion based filter for target recognition. In Proceedings of the 2015 IEEE International Conference on Signal and Image Processing Applications (ICSIPA), Kuala Lumpur, Malaysia, 19–21 October 2015; pp. 509–513. [Google Scholar] [CrossRef]
- Gardezi, A.; Alkandri, A.; Birch, P.; Young, R.; Chatwin, C. A space variant maximum average correlation height (MACH) filter for object recognition in real time thermal images for security applications. In Optics and Photonics for Counterterrorism and Crime Fighting VI and Optical Materials in Defence Systems Technology VII; Lewis, C., Burgess, D., Zamboni, R., Kajzar, F., Heckman, E.M., Eds.; International Society for Optics and Photonics, SPIE: Toulouse, France, 2010; Volume 7838, pp. 191–204. [Google Scholar] [CrossRef]
- Gardezi, A.; Al-Kandri, A.; Birch, P.; Young, R.; Chatwin, C. Enhancement of the speed of space-variant correlation filter implementations by using low-pass pre-filtering for kernel placement and applications to real-time security monitoring. In Optical Pattern Recognition XXII; Casasent, D.P., Chao, T.H., Eds.; International Society for Optics and Photonics, SPIE: Orlando, FL, USA, 2011; Volume 8055, pp. 78–88. [Google Scholar] [CrossRef]
- Awan, A.B. Composite filtering strategy for improving distortion invariance in object recognition. IET Image Process. 2018, 12, 1499–1509. [Google Scholar] [CrossRef]
- Zhou, A.; Yao, A.; Guo, Y.; Xu, L.; Chen, Y. Incremental Network Quantization: Towards Lossless CNNs with Low-Precision Weights. CoRR 2017, abs/1702.03044. Available online: http://xxx.lanl.gov/abs/1702.03044 (accessed on 25 August 2017).
- Gysel, P. Ristretto: Hardware-Oriented Approximation of Convolutional Neural Networks. CoRR 2016, abs/1605.06402. Available online: http://xxx.lanl.gov/abs/1605.06402 (accessed on 20 May 2016).
- Hubara, I.; Courbariaux, M.; Soudry, D.; El-Yaniv, R.; Bengio, Y. Quantized Neural Networks: Training Neural Networks with Low Precision Weights and Activations. CoRR 2016, abs/1609.07061. Available online: http://xxx.lanl.gov/abs/1609.07061 (accessed on 22 September 2016).
- Viksten, F.; Forssén, P.E.; Johansson, B.; Moe, A. Comparison of Local Image Descriptors for Full 6 Degree-of-Freedom Pose Estimation. In Proceedings of the IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009. [Google Scholar]
- Venkatraman, E. A permutation test to compare receiver operating characteristic curves. Biometrics 2000, 56, 1134–1138. [Google Scholar] [CrossRef] [PubMed]
- Venkatraman, E.S.; Begg, C.B. A distribution-free procedure for comparing receiver operating characteristic curves from a paired experiment. Biometrika 1996, 83, 835–848. Available online: http://xxx.lanl.gov/abs/https://academic.oup.com/biomet/article-pdf/83/4/835/703326/83-4-835.pdf (accessed on 1 December 1996). [CrossRef]
- Hanley, J.A.; McNeil, B.J. A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology 1983, 148, 839–843. Available online: http://xxx.lanl.gov/abs/https://doi.org/10.1148/radiology.148.3.6878708 (accessed on 1 September 1983). [CrossRef] [PubMed] [Green Version]
- DeLong, E.R.; DeLong, D.M.; Clarke-Pearson, D.L. Comparing the Areas under Two or More Correlated Receiver Operating Characteristic Curves: A Nonparametric Approach. Biometrics 1988, 44, 837–845. [Google Scholar] [CrossRef]
Variables | Comments |
---|---|
Spatial filter weights in floating-point precision | |
Quantized weights for Power-of-Two (Po2) scheme | |
Quantized weights for Dynamic-Fixed-Point (DFP) scheme | |
Bit-width for precision reduction | |
Exponential power of two used for the upper-bound | |
Exponential power of two used for the lower-bound | |
v | Maximum absolute value of |
Quantized weights for the Dynamic-Fixed-Point scheme | |
Modified Average Image Correlation Height | |
Modified Average Image Similarity | |
Parameter of the contribution of quantization error | |
Parameter of the contribution of average | |
Co-efficient of quantization error | |
Raw correlation plane for test image j | |
Normalized correlation plane | |
Correlation output peak intensity | |
Threshold for object detection | |
Percentage difference between threshold and COPI |
Approaches | Cross-Correlation Domain | Emphasis | Methodologies and Strengths | Limitations |
---|---|---|---|---|
MACH, OT-MACH [39,40] | Frequency domain | Automatic Target Recognition | The generalization of the minimum average correlation energy presented, which improved the target recognition in the presence of additive noise and distortions | Results in false-positives obtained because of excessive dependence on mean image and low discrimination ability |
EMACH [19] | Frequency domain | Automatic Target Recognition | Two new metrics, all image correlation height and the modified average similarity measure introduced to improve false-positives and increase the discrimination ability | Poor generalization capability |
EEMACH [20] | Frequency domain | Automatic Target Recognition | Based on Eigen analysis of EMACH filter which resulted in better generalization capability than the EMACH filter | Required extensive Eigen analysis is computationally expansive |
Fully invariant quaternion based filter [41] | Frequency domain | Automatic Target Recognition, to achieve invariance in terms of color, scale, and orientation. | For color target recognition, logarithm mapping and EMACH combined in quaternion domain which successfully solved color, rotation, and scale distortions | Incurs an extra computational cost due to pre-processing involved |
Space variant maximum average correlation height (MACH) filter [42] | Spatial domain | Automatic Target Recognition | Enables detection in an unpredictable environment which is resilient against background heat signature variance and scale changes | Incurs the additional computation cost due to spatial domain filters |
Pre-processing using low-pass filtering of space-variant correlation filter [43] | Spatial domain, frequency domain pre-processing | Automatic Target Recognition reduces computation workload for target search | A low-pass filter is employed to reduces the search space for target detection | Incurs the computation complexity due to spatial domain filters and pre-processing steps |
Combination of spatial correlation filters and affine scale-invariant feature transform [1] | Spatial domain, spatial domain pre-processing | Automatic Target Recognition, to achieve invariance to color, scale, and orientation | Used Affine Scale Invariant Feature Transform (ASIFT) for pre-processing to achieve translation, zoom, rotation, and two camera axis orientation invariance | Increases performance and increases the computation complexity due to ASIFT |
Composite filtering [44] | Frequency domain | Automatic Target Recognition, to achieve full invariance | Resilience against distortion, for example, in-plane and out-of-plane rotation, illumination, and scale alterations which obtained after the pre-processing of the difference of Gaussian (DoG) and logarithmic on EEMACH | Requirement of computational resources increase extensively |
Ours | Spatial domain | Automatic Target Recognition, to achieve sparse and compressed correlation filter representation. | Automatic Target Recognition to achieve sparse and compressed correlation filter representation. |
Bit-Width | Frequency | Spatial | ||||||
---|---|---|---|---|---|---|---|---|
Po2 | DFP | Po2 | DFP | |||||
COPI | Score | COPI | Score | COPI | Score | COPI | Score | |
1 | 1.42 | 3.5128 | 1.42 | 3.5128 | 3.15 | 3.5548 | 1.38 | 3.9381 |
2 | 2,439,063 | 4.3748 | 2,439,063 | 4.3748 | 7.36 | 3.4448 | 3.53 | 3.6044 |
3 | 1,557,504 | 3.8072 | 1,783,727 | 4.1245 | 3.85 | 3.8715 | 3.17 | 3.7645 |
4 | 1,532,146 | 3.7792 | 1,986,866 | 3.965 | 3.69 | 3.785 | 7.92 | 3.4876 |
5 | 1,532,708 | 3.7801 | 1,901,382 | 3.9308 | 3.72 | 3.7715 | 3.24 | 3.4693 |
6 | 1,532,707 | 3.7801 | 1,895,484 | 3.9069 | 3.72 | 3.7714 | 2.89 | 3.4648 |
7 | 1,532,707 | 3.7801 | 1,898,087 | 3.9115 | 3.72 | 3.7714 | 2.26 | 3.4632 |
8 | 1,532,707 | 3.7801 | 1,903,349 | 3.9076 | 3.72 | 3.7714 | 2.89 | 3.4611 |
9 | 1,532,707 | 3.7801 | 1,903,271 | 3.9042 | 3.72 | 3.7714 | 7.98 | 3.461 |
10 | 1532707 | 3.7801 | 1,903,113 | 3.9072 | 3.72 | 3.7714 | 7.98 | 3.4607 |
11 | 1,532,707 | 3.7801 | 1,902,467 | 3.9057 | 3.72 | 3.7714 | 7.98 | 3.461 |
12 | 1,532,707 | 3.7801 | 1,902,701 | 3.9063 | 3.72 | 3.7714 | 2.89 | 3.4609 |
13 | 1,532,707 | 3.7801 | 1,902,787 | 3.9058 | 3.72 | 3.7714 | 2.89 | 3.4609 |
14 | 1,532,707 | 3.7801 | 1,902,709 | 3.9058 | 3.72 | 3.7714 | 2.89 | 3.4609 |
15 | 1,532,707 | 3.7801 | 1,902,748 | 3.9058 | 3.72 | 3.7714 | 2.89 | 3.4609 |
16 | 1,532,707 | 3.7801 | 1,902,741 | 3.9059 | 3.72 | 3.7714 | 2.89 | 3.4609 |
Legends | Response Description | Legends | Response Description |
---|---|---|---|
Full_Precision_sp | Floating-point precision of ST filter | Full_Precision_fre | Floating-point precision of ST filter |
Direct_Quantization_fre_pw2 | Direct quantization using Po2 of FT filter | InverseLogPolar_Quantization _fre_pw2 | Quantization with Inverse log-polar pre-processing using Po2 of FT filter |
Direct_Quantization_fre_dft | Direct quantization using DFP of FT filter | InverseLogPolar_Quantization _fre_dft | Quantization with Inverse log-polar pre-processing using DFP of FT filter |
Direct_Quantization_sp_pw2 | Direct quantization using Po2 of ST filter | InverseLogPolar_Quantization _sp_pw2 | Quantization with Inverse log-polar pre-processing using Po2 of ST filter |
Direct_Quantization_sp_dft | Direct quantization using DFP of ST filter | InverseLogPolar_Quantization _sp_dft | Quantization with Inverse log-polar pre-processing using DFP of ST filter |
LogPolar_Quantization _fre_pw2 | Quantization with log-polar pre-processing using Po2 of FT filter | Retrain_Quantization _fre_pw2 | Retrain-quantization using Po2 of FT filter |
LogPolar_Quantization _fre_dft | Quantization with log-polar pre-processing using DFP of FT filter | Retrain_Quantization _fre_dft | Retrain-quantization using DFP of FT filter |
LogPolar_Quantization _sp_pw2 | Quantization with log-polar pre-processing using Po2 of ST filter | Retrain_Quantization _sp_pw2 | Retrain-quantization using Po2 of ST filter |
LogPolar_Quantization _sp_dft | Quantization with log-polar pre-processing using DFP of ST filter | Retrain_Quantization _sp_dft | Retrain-quantization using DFP of ST filter |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sabir, D.; Hanif, M.A.; Hassan, A.; Rehman, S.; Shafique, M. Weight Quantization Retraining for Sparse and Compressed Spatial Domain Correlation Filters. Electronics 2021, 10, 351. https://doi.org/10.3390/electronics10030351
Sabir D, Hanif MA, Hassan A, Rehman S, Shafique M. Weight Quantization Retraining for Sparse and Compressed Spatial Domain Correlation Filters. Electronics. 2021; 10(3):351. https://doi.org/10.3390/electronics10030351
Chicago/Turabian StyleSabir, Dilshad, Muhammmad Abdullah Hanif, Ali Hassan, Saad Rehman, and Muhammad Shafique. 2021. "Weight Quantization Retraining for Sparse and Compressed Spatial Domain Correlation Filters" Electronics 10, no. 3: 351. https://doi.org/10.3390/electronics10030351
APA StyleSabir, D., Hanif, M. A., Hassan, A., Rehman, S., & Shafique, M. (2021). Weight Quantization Retraining for Sparse and Compressed Spatial Domain Correlation Filters. Electronics, 10(3), 351. https://doi.org/10.3390/electronics10030351