A Feasibility Study of 2-D Microwave Thorax Imaging Based on the Supervised Descent Method
Abstract
:1. Introduction
2. Formulations
3. Numerical Experiments and Discussions
3.1. Description of Thorax Model
3.2. Training Set
3.3. Numerical Experiments
3.3.1. Iterative SDM
3.3.2. One-Step SDM
3.4. Discussions
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CT | Computed Tomography |
CNN | Convolutional Neural Network |
DoI | Domain of Interest |
FE-BI | Finite Element-Boundary Integral |
ISM | Industrial, Scientific and Medical |
MATLAB | Matrix Laboratory |
MRI | Magnetic Resonance Imaging |
SDM | Supervised Descent Method |
TM | Transverse Magnetic |
References
- Fear, E.C.; Li, X.; Hagness, S.C.; Stuchly, M.A. Confocal microwave imaging for breast cancer detection: Localization of tumors in three dimensions. IEEE Trans. Biomed. Eng. 2002, 49, 812–822. [Google Scholar] [CrossRef] [Green Version]
- Meaney, P.M.; Fanning, M.W.; Dun, L.; Poplack, S.P.; Paulsen, K.D. A clinical prototype for active microwave imaging of the breast. IEEE Trans. Microw. Theory Tech. 2000, 48, 1841–1853. [Google Scholar] [CrossRef]
- Scapaticci, R.; Bucci, O.M.; Catapano, I.; Crocco, L. Robust microwave imaging for brain stroke monitoring. In Proceedings of the 2013 7th European Conference on Antennas and Propagation (EuCAP), Gothenburg, Sweden, 8–12 April 2013; pp. 75–78. [Google Scholar]
- Bisio, I.; Fedeli, A.; Lavagetto, F.; Luzzati, G.; Pastorino, M.; Randazzo, A.; Tavanti, E. Brain stroke detection by microwave imaging systems: Preliminary two-dimensional numerical simulations. In Proceedings of the 2016 IEEE International Conference on Imaging Systems and Techniques (IST), Chania, Greece, 4–6 October 2016; pp. 330–334. [Google Scholar] [CrossRef]
- Merunka, I.; Fiser, O.; Vrba, D.; Vrba, J. Numerical analysis of microwave tomography system for brain stroke detection. In Proceedings of the 2018 28th International Conference Radioelektronika (RADIOELEKTRONIKA), Prague, Czech Republic, 19–20 April 2018. [Google Scholar] [CrossRef]
- Semenov, S.; Seiser, B.; Stoegmann, E.; Auff, E. Electromagnetic tomography for brain imaging: From virtual to human brain. In Proceedings of the 2014 IEEE Conference on Antenna Measurements Applications (CAMA), Antibes Juan-les-Pins, France, 16–19 November 2014; pp. 1–4. [Google Scholar] [CrossRef]
- Ireland, D.; Bialkowski, K.; Abbosh, A. Microwave imaging for brain stroke detection using Born iterative method. IET Microw. Antennas Propag. 2013, 7, 909–915. [Google Scholar] [CrossRef]
- Celik, N.; Gagarin, R.; Youn, H.; Iskander, M.F. A Noninvasive Microwave Sensor and Signal Processing Technique for Continuous Monitoring of Vital Signs. IEEE Antennas Wirel. Propag. Lett. 2011, 10, 286–289. [Google Scholar] [CrossRef]
- Celik, N.; Gagarin, R.; Huang, G.C.; Iskander, M.F.; Berg, B.W. Microwave Stethoscope: Development and Benchmarking of a Vital Signs Sensor Using Computer-Controlled Phantoms and Human Studies. IEEE Trans. Biomed. Eng. 2014, 61, 2341–2349. [Google Scholar] [CrossRef]
- Rezaeieh, S.A.; Bialkowski, K.S.; Abbosh, A.M. Microwave System for the Early Stage Detection of Congestive Heart Failure. IEEE Access 2014, 2, 921–929. [Google Scholar] [CrossRef] [Green Version]
- Rezaeieh, S.; Zamani, A.; Bialkowski, K.; Mahmoud, A.; Abbosh, A. Feasibility of Using Wideband Microwave System for Non-Invasive Detection and Monitoring of Pulmonary Oedema. Sci. Rep. 2015, 5, 14047. [Google Scholar] [CrossRef] [Green Version]
- Iskander, M.F.; Durney, C.H. Electromagnetic techniques for medical diagnosis: A review. Proc. IEEE 1980, 68, 126–132. [Google Scholar] [CrossRef]
- Pedersen, P.C.; Johnson, C.C.; Durney, C.H.; Bragg, D.G. Microwave Reflection and Transmission Measurements for Pulmonary Diagnosis and Monitoring. IEEE Trans. Biomed. Eng. 1978, BME-25, 40–48. [Google Scholar] [CrossRef]
- Salman, S.; Wang, Z.; Colebeck, E.; Kiourti, A.; Topsakal, E.; Volakis, J.L. Pulmonary Edema Monitoring Sensor With Integrated Body-Area Network for Remote Medical Sensing. IEEE Trans. Antennas Propag. 2014, 62, 2787–2794. [Google Scholar] [CrossRef]
- Zamani, A.; Rezaeieh, S.A.; Abbosh, A.M. Lung cancer detection using frequency-domain microwave imaging. Electron. Lett. 2015, 51, 740–741. [Google Scholar] [CrossRef]
- Abdelhamid, M.M.; Allam, A.M. Detection of lung cancer using ultra wide band antenna. In Proceedings of the 2016 Loughborough Antennas Propagation Conference (LAPC), Loughborough, UK, 14–15 November 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Camacho, L.M.; Tjuatja, S. FDTD simulation of microwave scattering from a lung tumor. In Proceedings of the 2005 IEEE Antennas and Propagation Society International Symposium, Washington, DC, USA, 3–8 July 2005; Volume 3A, pp. 815–818. [Google Scholar] [CrossRef]
- Mohammed, B.J.; Abbosh, A.M.; Mustafa, S.; Ireland, D. Microwave System for Head Imaging. IEEE Trans. Instrum. Meas. 2014, 63, 117–123. [Google Scholar] [CrossRef]
- Ahdi Rezaeieh, S. Wideband Microwave Imaging Systems for the Diagnosis of Fluid Accumulation in the Human Torso. Ph.D. Thesis, The University of Queensland, Brisbane, Australia, 2016. [Google Scholar]
- Trefna, H.; Persson, M. Antenna array design for brain monitoring. In Proceedings of the 2008 IEEE Antennas and Propagation Society International Symposium, San Diego, CA, USA, 5–11 July 2008; pp. 1–4. [Google Scholar] [CrossRef]
- Rezaeieh, S.A.; Abbosh, A.M. Wideband and Unidirectional Folded Antenna for Heart Failure Detection System. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 844–847. [Google Scholar] [CrossRef]
- Nilavalan, R.; Craddock, I.J.; Preece, A.; Leendertz, J.; Benjamin, R. Wideband microstrip patch antenna design for breast cancer tumour detection. IET Microwaves, Antennas Propag. 2007, 1, 277–281. [Google Scholar] [CrossRef] [Green Version]
- Bahramiabarghouei, H.; Porter, E.; Santorelli, A.; Gosselin, B.; Popović, M.; Rusch, L.A. Flexible 16 Antenna Array for Microwave Breast Cancer Detection. IEEE Trans. Biomed. Eng. 2015, 62, 2516–2525. [Google Scholar] [CrossRef]
- Sugitani, T.; Kubota, S.; Toya, A.; Xiao, X.; Kikkawa, T. A Compact 4 × 4 Planar UWB Antenna Array for 3-D Breast Cancer Detection. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 733–736. [Google Scholar] [CrossRef]
- Yun, X.; Fear, E.C.; Johnston, R.H. Compact antenna for Radar-based breast cancer detection. IEEE Trans. Antennas Propag. 2005, 53, 2374–2380. [Google Scholar] [CrossRef]
- Hagness, S.C.; Taflove, A.; Bridges, J.E. Wideband ultralow reverberation antenna for biological sensing. Electron. Lett. 1997, 33, 1594–1595. [Google Scholar] [CrossRef]
- Zhang, H.; Li, M.; Yang, F.; Xu, S. A feasibility study of microwave respiration monitoring. In Proceedings of the 2017 Sixth Asia-Pacific Conference on Antennas and Propagation (APCAP), Xi’an, China, 16–19 October 2017; pp. 1–3. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, X.; Li, M.; Yang, F.; Xu, S. A Compact Dual-Band Folded-Cavity Antenna for Microwave Biomedical Imaging Applications. In Proceedings of the 2019 IEEE International Conference on Computational Electromagnetics (ICCEM), Shanghai, China, 20–22 March 2019; pp. 1–3. [Google Scholar] [CrossRef]
- Zhang, H.; Li, M.; Yang, F.; Xu, S.; Zhou, H.; Yang, Y.; Chen, L. A Low-Profile Compact Dual-Band L-Shape Monopole Antenna for Microwave Thorax Monitoring. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 448–452. [Google Scholar] [CrossRef]
- Zamani, A.; Mobashsher, A.T.; Mohammed, B.J.; Abbosh, A.M. Microwave imaging using frequency domain method for brain stroke detection. In Proceedings of the 2014 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-Bio2014), London, UK, 8–10 December 2014; pp. 1–3. [Google Scholar] [CrossRef]
- Mojabi, P.; LoVetri, J. Microwave Biomedical Imaging Using the Multiplicative Regularized Gauss–Newton Inversion. IEEE Antennas Wirel. Propag. Lett. 2009, 8, 645–648. [Google Scholar] [CrossRef]
- Shao, W.; Du, Y. Microwave Imaging by Deep Learning Network: Feasibility and Training Method. IEEE Trans. Antennas Propag. 2020, 68, 5626–5635. [Google Scholar] [CrossRef]
- Shah, P.; Chen, G.; Moghaddam, M. Learning Nonlinearity of Microwave Imaging Through Deep Learning. In Proceedings of the 2018 IEEE International Symposium on Antennas and Propagation USNC/URSI National Radio Science Meeting, Boston, MA, USA, 8–13 July 2018; pp. 699–700. [Google Scholar] [CrossRef]
- Shah, P.; Moghaddam, M. Super resolution for microwave imaging: A deep learning approach. In Proceedings of the 2017 IEEE International Symposium on Antennas and Propagation USNC/URSI National Radio Science Meeting, San Diego, CA, USA, 9–15 July 2017; pp. 849–850. [Google Scholar] [CrossRef]
- Gerazov, B.; Conceicao, R.C. Deep learning for tumour classification in homogeneous breast tissue in medical microwave imaging. In Proceedings of the IEEE EUROCON 2017—17th International Conference on Smart Technologies, Ohrid, Macedonia, 6–8 July 2017; pp. 564–569. [Google Scholar] [CrossRef]
- Salucci, M.; Marcantonio, D.; Li, M.; Oliveri, G.; Rocca, P.; Massa, A. Innovative Machine Learning Techniques for Biomedical Imaging. In Proceedings of the 2019 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS), Tel-Aviv, Israel, 4–6 November 2019; pp. 1–3. [Google Scholar] [CrossRef]
- Xiong, X.; De la Torre, F. Supervised Descent Method and Its Applications to Face Alignment. In Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013; pp. 532–539. [Google Scholar] [CrossRef] [Green Version]
- Guo, R.; Jia, Z.; Song, X.; Li, M.; Yang, F.; Xu, S.; Abubakar, A. Supervised Descent Method for Full-wave Microwave Imaging. In Proceedings of the 2019 Photonics Electromagnetics Research Symposium-Fall (PIERS-Fall), Xiamen, China, 17–20 December 2019; pp. 624–631. [Google Scholar] [CrossRef]
- Guo, R.; Song, X.; Li, M.; Yang, F.; Xu, S.; Abubakar, A. Supervised Descent Learning Technique for 2-D Microwave Imaging. IEEE Trans. Antennas Propag. 2019, 67, 3550–3554. [Google Scholar] [CrossRef]
- Guo, R.; Jia, Z.; Song, X.; Li, M.; Yang, F.; Xu, S.; Abubakar, A. Pixel-and Model-based Microwave Inversion with Supervised Descent Method for Dielectric Targets. IEEE Trans. Antennas Propag. 2020, 68, 8114–8126. [Google Scholar] [CrossRef]
- Guo, R.; Jia, Z.; Song, X.; Li, M.; Yang, F.; Xu, S.; Abubakar, A. Application of Supervised Descent Method to Parametric Level-set Approach. In Proceedings of the 2019 IEEE International Conference on Computational Electromagnetics (ICCEM), Shanghai, China, 20–22 March 2019; pp. 1–2. [Google Scholar] [CrossRef]
- Ma, Y.; Guo, R.; Li, M.; Yang, F.; Xu, S.; Abubakar, A. Supervised Descent Method for 2D Magnetotelluric Inversion using Adam Optimization. In Proceedings of the 2019 International Applied Computational Electromagnetics Society Symposium—China (ACES), Nanjing, China, 8–11 August 2019; Volume 1, pp. 1–2. [Google Scholar] [CrossRef]
- Guo, R.; Li, M.; Yang, F.; Xu, S.; Abubakar, A. Application of supervised descent method method for 2D magnetotelluric data inversion. Geophysics 2020, 85, WA53–WA65. [Google Scholar] [CrossRef]
- Guo, R.; Li, M.; Fang, G.; Yang, F.; Xu, S.; Abubakar, A. Application of supervised descent method to transient electromagnetic data inversion. Geophysics 2019, 84, E225–E237. [Google Scholar] [CrossRef]
- Li, M.; Zhang, K.; Guo, R.; Yang, F.; Xu, S.; Abubakar, A. Supervised Descent Method for Electrical Impedance Tomography. In Proceedings of the 2019 Photonics Electromagnetics Research Symposium—Fall (PIERS—Fall), Xiamen, China, 17–20 December 2019; pp. 2342–2348. [Google Scholar] [CrossRef]
- Gabriel, C. Compilation of the Dielectric Properties of Body Tissues at RF and Microwave Frequencies; Technical Report; King’s Coll London (United Kingdom) Department of Physics: London, UK, 1996. [Google Scholar]
Tissue | 433 MHz | 915 MHz | ||
---|---|---|---|---|
(S/m) | (S/m) | |||
Muscle | 56.9 | 0.80 | 55.0 | 0.95 |
Inflated Lung | 23.6 | 0.38 | 22.0 | 0.46 |
Heart | 65.3 | 0.98 | 59.8 | 1.24 |
433 MHz | ||||||
Center Position (m) | Major Axis (m) | Minor Axis (m) | Relative Permittivity | Conductivity (S/m) | Rotation Angle (°) | |
Left Ellipse | (0.140, 0.279) | (0.140, 0.274) | (10, 55) | (0.2, 0.8) | (−60, 60) | |
Right Ellipse | (0.140, 0.277) | (0.111, 0.207) | (10,55) | (0.2, 0.8) | (−60, 60) | |
Circle | Diameter (0.080, 0.196) | (57, 87) | (0.8, 1.2) | 0 | ||
915 MHz | ||||||
Center Position (m) | Major Axis (m) | Minor Axis (m) | Relative Permittivity | Conductivity (S/m) | Rotation Angle (°) | |
Left Ellipse | (0.140, 0.278) | (0.140, 0.274) | (10, 55) | (0.35, 0.95) | (−60, 60) | |
Right Ellipse | (0.140, 0.279) | (0.111, 0.208) | (10, 55) | (0.35, 0.95) | (−60, 60) | |
Circle | Diameter (0.080, 0.199) | (55, 85) | (0.95, 1.35) | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Li, M.; Yang, F.; Xu, S.; Yin, Y.; Zhou, H.; Yang, Y.; Zeng, S.; Shao, J. A Feasibility Study of 2-D Microwave Thorax Imaging Based on the Supervised Descent Method. Electronics 2021, 10, 352. https://doi.org/10.3390/electronics10030352
Zhang H, Li M, Yang F, Xu S, Yin Y, Zhou H, Yang Y, Zeng S, Shao J. A Feasibility Study of 2-D Microwave Thorax Imaging Based on the Supervised Descent Method. Electronics. 2021; 10(3):352. https://doi.org/10.3390/electronics10030352
Chicago/Turabian StyleZhang, Haolin, Maokun Li, Fan Yang, Shenheng Xu, Yan Yin, Hongyu Zhou, Yubo Yang, Sihang Zeng, and Jianchong Shao. 2021. "A Feasibility Study of 2-D Microwave Thorax Imaging Based on the Supervised Descent Method" Electronics 10, no. 3: 352. https://doi.org/10.3390/electronics10030352
APA StyleZhang, H., Li, M., Yang, F., Xu, S., Yin, Y., Zhou, H., Yang, Y., Zeng, S., & Shao, J. (2021). A Feasibility Study of 2-D Microwave Thorax Imaging Based on the Supervised Descent Method. Electronics, 10(3), 352. https://doi.org/10.3390/electronics10030352