A Smartphone-Based Application for Scale Pest Detection Using Multiple-Object Detection Methods
Abstract
:1. Introduction
2. Deep Meta-Architecture-Based Scale Pest Recognition
2.1. System Overview
2.2. Data Annotation
2.3. Data Augmentation
2.4. Object Detection Models
2.4.1. Faster Region-Based Convolutional Network (Faster R-CNN)
2.4.2. Single-Shot Detector (SSD)
2.4.3. You Only Look Once v4 (YOLO v4)
3. Experimental Setup
3.1. Dataset Descriptions
3.2. Performance of the Deep-Learning-Based Object Detection Model
3.3. Qualitative Results of the Pest Detection System
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kondo, T.; Gullan, P.J.; Williams, D.J. Coccidology. The study of scale insects (Hemiptera: Sternorrhyncha: Coccoidea). Cienc. Tecnol. Agropecu. 2008, 9, 55–61. [Google Scholar] [CrossRef] [Green Version]
- Mwebaze, E.; Owomugisha, G. Machine learning for plant disease incidence and severity measurements from leaf images. In Proceedings of the 2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA), Anaheim, CA, USA, 18–20 December 2016; pp. 158–163. [Google Scholar]
- Ramesh, S.; Hebbar, R.; Niveditha, M.; Pooja, R.; Shashank, N.; Vinod, P. Plant disease detection using machine learning. In Proceedings of the 2018 International Conference on Design Innovations for 3Cs Compute Communicate Control (ICDI3C), Bangalore, India, 25–28 April 2018; pp. 41–45. [Google Scholar]
- Yang, X.; Guo, T. Machine learning in plant disease research. Eur. J. Biomed. Res. 2017, 3, 6–9. [Google Scholar] [CrossRef] [Green Version]
- Shruthi, U.; Nagaveni, V.; Raghavendra, B. A review on machine learning classification techniques for plant disease detection. In Proceedings of the 2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS), Coimbatore, India, 15–16 March 2019; pp. 281–284. [Google Scholar]
- Padol, P.B.; Yadav, A.A. SVM classifier based grape leaf disease detection. In Proceedings of the 2016 Conference on Advances in Signal Processing (CASP), Pune, India, 9–11 June 2016; pp. 175–179. [Google Scholar]
- Cheng, B.; Matson, E.T. A feature-based machine learning agent for automatic rice and weed discrimination. In Proceedings of the International Conference on Artificial Intelligence and Soft Computing, Zakopane, Poland, 14–18 June 2015; pp. 517–527. [Google Scholar]
- Ahmed, F.; Al-Mamun, H.A.; Bari, A.H.; Hossain, E.; Kwan, P. Classification of crops and weeds from digital images: A support vector machine approach. Crop Prot. 2012, 40, 98–104. [Google Scholar] [CrossRef]
- Herrera, P.J.; Dorado, J.; Ribeiro, Á. A novel approach for weed type classification based on shape descriptors and a fuzzy decision-making method. Sensors 2014, 14, 15304–15324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saha, D.; Hanson, A.; Shin, S.Y. Development of enhanced weed detection system with adaptive thresholding and support vector machine. In Proceedings of the International Conference on Research in Adaptive and Convergent Systems, Odense, Denmark, 11–14 October 2016; pp. 85–88. [Google Scholar]
- Bakhshipour, A.; Jafari, A. Evaluation of support vector machine and artificial neural networks in weed detection using shape features. Comput. Electron. Agric. 2018, 145, 153–160. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Khoshtaghaza, M.-H.; Minaei, S.; Jamshidi, B. Vision-based pest detection based on SVM classification method. Comput. Electron. Agric. 2017, 137, 52–58. [Google Scholar] [CrossRef]
- de Oliveira Aparecido, L.E.; de Souza Rolim, G.; De, J.R.d.S.C.; Costa, C.T.S.; de Souza, P.S. Machine learning algorithms for forecasting the incidence of Coffea arabica pests and diseases. Int. J. Biometeorol. 2020, 64, 671–688. [Google Scholar] [CrossRef]
- Kim, Y.H.; Yoo, S.J.; Gu, Y.H.; Lim, J.H.; Han, D.; Baik, S.W. Crop pests prediction method using regression and machine learning technology: Survey. IERI Procedia 2014, 6, 52–56. [Google Scholar] [CrossRef] [Green Version]
- Fuentes, A.; Yoon, S.; Kim, S.C.; Park, D.S. A robust deep-learning-based detector for real-time tomato plant diseases and pests recognition. Sensors 2017, 17, 2022. [Google Scholar] [CrossRef] [Green Version]
- Silva, D.F.; De Souza, V.M.; Batista, G.E.; Keogh, E.; Ellis, D.P. Applying machine learning and audio analysis techniques to insect recognition in intelligent traps. In Proceedings of the 2013 12th International Conference on Machine Learning and Applications, Miami, FL, USA, 4–7 December 2013; pp. 99–104. [Google Scholar]
- Jiao, L.; Dong, S.; Zhang, S.; Xie, C.; Wang, H. AF-RCNN: An anchor-free convolutional neural network for multi-categories agricultural pest detection. Comput. Electron. Agric. 2020, 174, 105522. [Google Scholar] [CrossRef]
- Li, D.; Wang, R.; Xie, C.; Liu, L.; Zhang, J.; Li, R.; Wang, F.; Zhou, M.; Liu, W. A recognition method for rice plant diseases and pests video detection based on deep convolutional neural network. Sensors 2020, 20, 578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016; pp. 21–37. [Google Scholar]
- Zhong, Y.; Gao, J.; Lei, Q.; Zhou, Y. A vision-based counting and recognition system for flying insects in intelligent agriculture. Sensors 2018, 18, 1489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, J. Understanding of object detection based on CNN family and YOLO. J. Phys. 2018, 1004, 012029. [Google Scholar] [CrossRef]
- Zhao, Z.-Q.; Zheng, P.; Xu, S.-t.; Wu, X. Object detection with deep learning: A review. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 3212–3232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-Y.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Wang, C.-Y.; Mark Liao, H.-Y.; Wu, Y.-H.; Chen, P.-Y.; Hsieh, J.-W.; Yeh, I.-H. CSPNet: A new backbone that can enhance learning capability of cnn. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 16–18 June 2020; pp. 390–391. [Google Scholar]
Testing Dataset | Mealybugs (RF) | Coccidae (RR) | Diaspididae (RS) | ||||||
---|---|---|---|---|---|---|---|---|---|
Precision | Recall | F1 | Precision | Recall | F1 | Precision | Recall | F1 | |
Faster R-CNN | 75% | 100% | 85% | 96% | 88% | 91% | 100% | 71% | 83% |
SSD | 100% | 98% | 98% | 100% | 100% | 100% | 98% | 100% | 98% |
YOLO v4 | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% |
Faster R-CNN | SSD | YOLO V4 | |
---|---|---|---|
Predicted results of mealybug pest images | |||
Predicted results of Coccidae pest images | |||
Predicted results of Diaspididae pest images |
Mealybugs | Diaspididae | ||
---|---|---|---|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.-W.; Lin, W.-J.; Cheng, H.-J.; Hung, C.-L.; Lin, C.-Y.; Chen, S.-P. A Smartphone-Based Application for Scale Pest Detection Using Multiple-Object Detection Methods. Electronics 2021, 10, 372. https://doi.org/10.3390/electronics10040372
Chen J-W, Lin W-J, Cheng H-J, Hung C-L, Lin C-Y, Chen S-P. A Smartphone-Based Application for Scale Pest Detection Using Multiple-Object Detection Methods. Electronics. 2021; 10(4):372. https://doi.org/10.3390/electronics10040372
Chicago/Turabian StyleChen, Jian-Wen, Wan-Ju Lin, Hui-Jun Cheng, Che-Lun Hung, Chun-Yuan Lin, and Shu-Pei Chen. 2021. "A Smartphone-Based Application for Scale Pest Detection Using Multiple-Object Detection Methods" Electronics 10, no. 4: 372. https://doi.org/10.3390/electronics10040372
APA StyleChen, J. -W., Lin, W. -J., Cheng, H. -J., Hung, C. -L., Lin, C. -Y., & Chen, S. -P. (2021). A Smartphone-Based Application for Scale Pest Detection Using Multiple-Object Detection Methods. Electronics, 10(4), 372. https://doi.org/10.3390/electronics10040372