Nonlocal Low-Rank Regularization Combined with Bilateral Total Variation for Compressive Sensing Image Reconstruction
Abstract
:1. Introduction
2. Reconstruction Algorithm Combining Bilateral Total Variation and Nonlocal Low-Rank Regularization
2.1. The Bilateral Total Variation Model
2.2. The Weighted Nuclear Norm Low-Rank Model
2.3. The Joint Model
3. Compressed Image Reconstruction Process
3.1. Solving the Sub-Problem of
3.2. Solving the Sub-Problem of
3.3. Solving the Sub-Problem of
3.4. Solving the Sub-Problem of
Algorithm 1: The proposed CS reconstruction algorithm |
Input: The measurements and sampling matrix Initialization: The traditional CS algorithm (DCT, DWT, etc.) is used to estimate the initial image ; Set parameters ; Set the nuclear norm weight ; Set the gradient weight ; Outer loop: for do Using the similar block matching strategy to search and group the similar blocks in the image to get the similar block matrix ; Set ; Inner loop: for each block in do Update weight: ; Calculate according to Equation (17); End for Calculate according to Equation (20); Calculate according to Equation (22), update the gradient weight according to Equation (23); Calculate according to Equation (25); Update Lagrange multipliers according to Equation (15); if , relocate the similar blocks position and update similar blocks grouping; End for Output: The final reconstructed image . |
4. Experiments
4.1. Parameters Selection
4.2. Noiseless CS Measurements
4.3. Noisy CS Measurements
4.4. Reconstruction Time
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Symbol | Description | Symbol | Description |
---|---|---|---|
CS | compressive sensing | sampling matrix | |
DCT | discrete cosine transform | ADMM iterations | |
DWT | discrete wavelet transform | relocate similar blocks threshold | |
measured value | nuclear norm weight | ||
reconstructed image | gradient weight | ||
regularization parameter | similar block matrix | ||
regularization parameter | low-rank matrix | ||
spatial attenuation weight | auxiliary variable | ||
filter window size | auxiliary variable | ||
penalty parameter | Lagrange multiplier | ||
penalty parameter | Lagrange multiplier |
References
- Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [Google Scholar] [CrossRef]
- Candès, E.J.; Romberg, J.; Tao, T. Robust Uncertainty Principles: Exact Signal Reconstruction from Highly Incomplete Frequency Information. IEEE Trans. Inf. Theory 2006. [Google Scholar] [CrossRef] [Green Version]
- Candès, E.J.; Wakin, M.B. An Introduction to Compressive Sampling. IEEE Signal Process. Mag. 2008, 25, 21–30. [Google Scholar] [CrossRef]
- Sun, M.J.; Edgar, M.P.; Gibson, G.M.; Sun, B.; Radwell, N.; Lamb, R.; Padgett, M.J. Single-pixel three-dimensional imaging with time-based depth resolution. Nat. Comm. 2016, 7, 12010. [Google Scholar] [CrossRef]
- Zhang, Y.; Edgar, M.P.; Sun, B.; Radwell, N.; Gibson, G.M.; Padgett, M.J. 3D single-pixel video. J. Opt. 2016, 18, 035203. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, B.; Zhou, N. A novel image compression–encryption hybrid algorithm based on the analysis sparse representation. Opt. Comm. 2017, 392, 223–233. [Google Scholar] [CrossRef]
- Rodriguez, A.D.; Clemente, P.; Tajahuerce, E.; Lancis, J. Dual-mode optical microscope based on single-pixel imaging. Optics Lasers Eng. 2016, 82, 87–94. [Google Scholar] [CrossRef] [Green Version]
- Shi, D.; Yin, K.; Huang, J.; Yuan, K.; Zhu, W.; Xie, C.; Liu, D.; Wang, Y. Fast tracking of moving objects using single-pixel imaging. Opt. Comm. 2019, 440, 155–162. [Google Scholar] [CrossRef]
- Martínez-León, L.; Clemente, P.; Mori, Y.; Climent, V.; Tajahuerce, E. Single-pixel digital holography with phase-encoded illumination. Opt. Express 2017, 25, 4975–4984. [Google Scholar] [CrossRef]
- Amitonova, L.V.; Boer, J.F.D. Compressive imaging through a multimode fiber. Opt. Lett. 2018, 43, 5427. [Google Scholar] [CrossRef] [PubMed]
- Lan, M.; Guan, D.; Gao, L.; Li, J.; Yu, S.; Wu, G. Robust compressive multimode fiber imaging against bending with enhanced depth of field. Opt. Express 2019, 27, 12957–12962. [Google Scholar] [CrossRef] [PubMed]
- Cohen, A.; Dahmen, W.; Devore, R. Orthogonal Matching Pursuit under the Restricted Isometry Property. Constr. Approx. 2017, 45, 113–127. [Google Scholar] [CrossRef] [Green Version]
- Han, X.; Zhao, G.; Li, X.; Shu, T.; Yu, W. Sparse signal reconstruction via expanded subspace pursuit. J. Appl. Remote Sens. 2019, 13, 1. [Google Scholar] [CrossRef]
- Tirer, T.; Giryes, R. Generalizing CoSaMP to Signals from a Union of Low Dimensional Linear Subspaces. Appl. Comput. Harmonic Anal. 2017. [Google Scholar] [CrossRef] [Green Version]
- Zeng, K.; Erus, G.; Sotiras, A.; Shinohara, R.T.; Davatzikos, C. Abnormality Detection via Iterative Deformable Registration and Basis-Pursuit Decomposition. IEEE Trans. Med. Imaging 2016, 35, 1937–1951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bayram, I. On the convergence of the iterative shrinkage/thresholding algorithm with a weakly convex penalty. IEEE Trans. Signal Process. 2016, 64, 1597–1608. [Google Scholar] [CrossRef] [Green Version]
- Gong, B.; Liu, W.; Tang, T.; Zhao, W.; Zhou, T. An Efficient Gradient Projection Method for Stochastic Optimal Control Problems. SIAM J. Num. Anal. 2017, 55, 2982–3005. [Google Scholar] [CrossRef] [Green Version]
- Vishnevskiy, V.; Gass, T.; Szekely, G.; Tanner, C.; Goksel, O. Isotropic Total Variation Regularization of Displacements in Parametric Image Registration. IEEE Trans. Med. Imaging 2017, 36, 385–395. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Qin, Y.; Ren, H.; Chang, L.; Zheng, H. Adaptive weighted high frequency iterative algorithm for fractional-order total variation with nonlocal regularization for image reconstruction. Electronics 2020, 9, 1103. [Google Scholar] [CrossRef]
- Candès, E.J.; Wakin, M.B.; Boyd, S.P. Enhancing Sparsity by Reweighted l1 Minimization. J. Fourier Anal. Appl. 2008, 14, 877–905. [Google Scholar] [CrossRef]
- Farsiu, S.; Robinson, M.D.; Elad, M.; Milanfar, P. Fast and robust multiframe super resolution. IEEE Trans. Image Process. 2004, 13, 1327–1344. [Google Scholar] [CrossRef]
- Buades, A.; Coll, B.; Morel, J.M. A non-local algorithm for image denoising. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, 20–25 June 2005; Volume 2, pp. 60–65. [Google Scholar]
- Dabov, K.; Foi, A.; Katkovnik, V.; Egiazarian, K.O. Image restoration by sparse 3D transform-domain collaborative filtering. In Proceedings of the Image Processing: Algorithms and Systems VI, San Jose, CA, USA, 28 January 2008. [Google Scholar]
- Dong, W.; Zhang, L.; Shi, G. Nonlocally Centralized Sparse Representation for Image Restoration. IEEE Trans. Image Process. 2012, 22. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Liu, S.; Zhao, D.; Xiong, R.; Ma, S. Improved total variation based image compressive sensing recovery by nonlocal regularization. In Proceedings of the 2013 IEEE International Symposium on Circuits and Systems (ISCAS), Beijing, China, 19–23 May 2013; pp. 2836–2839. [Google Scholar]
- Egiazarian, K.; Foi, A.; Katkovnik, V. Compressed Sensing Image Reconstruction via Recursive Spatially Adaptive Filtering. In Proceedings of the IEEE Conference on Image Processing, San Antonio, TX, USA, 17–19 September 2007. [Google Scholar]
- Dong, W.; Shi, G.; Li, X.; Ma, Y.; Huang, F. Compressive Sensing via Nonlocal Low-Rank Regularization. IEEE Trans. Image Process. 2014, 23, 3618–3632. [Google Scholar] [CrossRef] [PubMed]
- Gu, S.; Zhang, L.; Zuo, W.; Feng, X. Weighted Nuclear Norm Minimization with Application to Image Denoising. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014. [Google Scholar]
- Boyd, S.; Parikh, N.; Chu, E.; Peleato, B.; Eckstein, J. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers. Found. Trends Mach. Learn. 2011, 3, 1–122. [Google Scholar] [CrossRef]
- Tomasi, C.; Manduchi, R. Bilateral filtering for gray and color images. In Proceedings of the IEEE Conference on Computer Vision, Bombay, India, 7 January 1998. [Google Scholar]
- Cai, J.F.; Candès, E.J.; Shen, Z. A Singular Value Thresholding Algorithm for Matrix Completion. SIAM J. Optim. 2010, 20, 1956–1982. [Google Scholar] [CrossRef]
- Li, C.; Yin, W.; Jiang, H.; Zhang, Y. An efficient augmented Lagrangian method with applications to total variation minimization. Computat. Optim. Appl. 2013, 56, 507–530. [Google Scholar] [CrossRef] [Green Version]
- Nazareth, J.L. Conjugate gradient method. WIREs Computat. Stat. 2009, 1, 348–353. [Google Scholar] [CrossRef] [Green Version]
Image | Method | Sampling Rates | ||||
---|---|---|---|---|---|---|
0.05 | 0.1 | 0.15 | 0.2 | 0.25 | ||
Barbara | TVAL3 | 19.95|0.549 | 21.97|0.658 | 23.98|0.743 | 24.79|0.776 | 25.36|0.812 |
TVNLR | 21.88|0.549 | 22.56|0.663 | 24.07|0.750 | 25.36|0.826 | 27.54|0.883 | |
BM3D-CS | 23.41|0.621 | 24.31|0.739 | 27.52|0.821 | 30.94|0.904 | 33.64|0.935 | |
NLR-CS | 25.99|0.801 | 27.34|0.811 | 30.69|0.905 | 33.85|0.947 | 37.87|0.973 | |
Proposed | 28.16|0.836 | 29.20|0.863 | 32.93|0.936 | 36.45|0.966 | 39.57|0.979 | |
Boats | TVAL3 | 22.06|0.655 | 23.36|0.660 | 25.37|0.762 | 27.03|0.799 | 28.91|0.838 |
TVNLR | 24.31|0.660 | 25.15|0.673 | 26.90|0.769 | 28.07|0.806 | 29.60|0.838 | |
BM3D-CS | 25.04|0.669 | 27.52|0.795 | 29.89|0.826 | 32.88|0.909 | 34.93|0.943 | |
NLR-CS | 27.18|0.813 | 28.64|0.815 | 31.83|0.903 | 35.13|0.946 | 38.63|0.970 | |
Proposed | 29.64|0.845 | 30.02|0.853 | 34.35|0.935 | 37.87|0.965 | 40.47|0.978 | |
Cameraman | TVAL3 | 15.73|0.508 | 19.61|0.584 | 21.63|0.666 | 22.68|0.739 | 24.85|0.813 |
TVNLR | 17.23|0.537 | 21.26|0.645 | 22.40|0.687 | 24.98|0.771 | 27.24|0.829 | |
BM3D-CS | 22.67|0.656 | 24.56|0.742 | 26.36|0.790 | 29.12|0.879 | 32.04|0.908 | |
NLR-CS | 25.35|0.785 | 26.72|0.792 | 29.72|0.870 | 32.92|0.923 | 36.60|0.954 | |
Proposed | 27.72|0.812 | 28.16|0.820 | 31.42|0.895 | 35.15|0.942 | 38.71|0.964 | |
Foreman | TVAL3 | 15.17|0.770 | 17.64|0.854 | 20.86|0.874 | 22.84|0.890 | 24.03|0.905 |
TVNLR | 16.75|0.785 | 18.85|0.867 | 22.49|0.881 | 25.75|0.904 | 27.79|0.918 | |
BM3D-CS | 29.17|0.813 | 31.41|0.869 | 34.71|0.896 | 35.82|0.915 | 37.71|0.929 | |
NLR-CS | 32.49|0.877 | 33.61|0.898 | 37.27|0.927 | 39.68|0.957 | 41.34|0.970 | |
Proposed | 34.65|0.909 | 35.69|0.919 | 39.35|0.954 | 41.95|0.972 | 43.02|0.981 | |
House | TVAL3 | 16.44|0.599 | 21.91|0.734 | 22.51|0.775 | 26.21|0.808 | 27.43|0.826 |
TVNLR | 20.34|0.627 | 24.54|0.762 | 25.12|0.776 | 28.14|0.808 | 29.67|0.831 | |
BM3D-CS | 27.31|0.726 | 29.57|0.796 | 33.13|0.874 | 35.12|0.903 | 37.83|0.916 | |
NLR-CS | 31.27|0.840 | 32.71|0.857 | 36.30|0.914 | 39.22|0.952 | 40.64|0.960 | |
Proposed | 33.81|0.867 | 34.77|0.877 | 38.23|0.937 | 40.58|0.962 | 42.47|0.974 | |
Peppers | TVAL3 | 19.41|0.576 | 20.81|0.684 | 23.58|0.763 | 26.54|0.808 | 27.38|0.833 |
TVNLR | 19.95|0.585 | 21.13|0.690 | 24.54|0.770 | 27.67|0.805 | 28.89|0.838 | |
BM3D-CS | 25.17|0.701 | 26.07|0.771 | 28.57|0.836 | 29.55|0.863 | 30.32|0.882 | |
NLR-CS | 25.63|0.743 | 26.86|0.776 | 29.33|0.852 | 31.57|0.877 | 32.80|0.895 | |
Proposed | 27.34|0.798 | 28.82|0.818 | 31.49|0.871 | 33.51|0.901 | 35.24|0.923 | |
Monarch | TVAL3 | 17.59|0.535 | 19.36|0.675 | 24.91|0.787 | 26.77|0.827 | 27.65|0.859 |
TVNLR | 18.59|0.543 | 22.02|0.695 | 25.57|0.786 | 27.71|0.844 | 29.39|0.882 | |
BM3D-CS | 22.89|0.701 | 25.39|0.806 | 27.10|0.855 | 30.59|0.905 | 33.96|0.956 | |
NLR-CS | 24.92|0.807 | 26.48|0.846 | 28.61|0.896 | 32.47|0.945 | 37.10|0.972 | |
Proposed | 26.45|0.843 | 27.96|0.875 | 30.82|0.928 | 35.18|0.964 | 39.43|0.980 | |
Parrots | TVAL3 | 21.57|0.713 | 22.69|0.736 | 25.39|0.785 | 26.93|0.849 | 27.84|0.893 |
TVNLR | 22.22|0.714 | 24.74|0.721 | 26.48|0.785 | 27.95|0.854 | 28.12|0.894 | |
BM3D-CS | 25.95|0.769 | 27.81|0.842 | 30.94|0.877 | 32.14|0.899 | 33.43|0.919 | |
NLR-CS | 29.05|0.852 | 30.88|0.865 | 33.60|0.919 | 37.13|0.951 | 40.21|0.969 | |
Proposed | 31.29|0.875 | 32.10|0.887 | 36.45|0.941 | 39.50|0.964 | 41.43|0.974 | |
Testpat1 | TVAL3 | 7.90|0.486 | 12.07|0.583 | 14.85|0.667 | 17.23|0.736 | 20.55|0.805 |
TVNLR | 10.23|0.524 | 14.06|0.617 | 17.01|0.749 | 19.31|0.796 | 22.34|0.836 | |
BM3D-CS | 17.69|0.739 | 21.33|0.784 | 23.54|0.854 | 25.50|0.901 | 27.01|0.936 | |
NLR-CS | 13.68|0.534 | 16.45|0.674 | 18.76|0.770 | 21.67|0.822 | 23.83|0.852 | |
Proposed | 15.41|0.647 | 18.62|0.758 | 20.70|0.816 | 24.65|0.875 | 26.55|0.910 | |
Testpat2 | TVAL3 | 7.17|0.468 | 12.40|0.664 | 13.55|0.686 | 17.96|0.776 | 19.32|0.795 |
TVNLR | 10.26|0.504 | 14.74|0.694 | 16.52|0.724 | 20.92|0.805 | 24.81|0.838 | |
BM3D-CS | 16.62|0.633 | 18.77|0.772 | 23.98|0.814 | 26.11|0.858 | 28.99|0.892 | |
NLR-CS | 18.78|0.767 | 21.64|0.803 | 24.64|0.831 | 27.78|0.909 | 30.49|0.916 | |
Proposed | 22.64|0.813 | 24.03|0.839 | 26.88|0.868 | 30.95|0.928 | 33.03|0.956 |
Image | Method | PSNR(dB) | ||||
---|---|---|---|---|---|---|
SNR = 10 | SNR = 15 | SNR = 20 | SNR = 25 | SNR = 30 | ||
Barbara | TVAL3 | 4.09 | 9.40 | 17.11 | 21.35 | 23.80 |
TVNLR | 5.27 | 12.54 | 18.57 | 22.38 | 24.79 | |
BM3D-CS | 15.91 | 19.96 | 22.82 | 25.32 | 26.92 | |
NLR-CS | 16.20 | 20.35 | 23.90 | 26.64 | 30.06 | |
Proposed | 16.60 | 21.08 | 25.24 | 29.15 | 32.96 | |
Boats | TVAL3 | 3.47 | 12.71 | 15.62 | 21.20 | 25.81 |
TVNLR | 4.52 | 13.65 | 17.76 | 22.82 | 26.31 | |
BM3D-CS | 14.98 | 19.73 | 24.77 | 27.60 | 29.09 | |
NLR-CS | 16.02 | 20.98 | 25.30 | 28.75 | 31.51 | |
Proposed | 16.40 | 22.10 | 26.43 | 29.32 | 33.06 | |
Cameraman | TVAL3 | 2.96 | 6.69 | 11.36 | 17.91 | 21.55 |
TVNLR | 3.88 | 8.01 | 14.67 | 18.70 | 23.67 | |
BM3D-CS | 15.09 | 19.57 | 23.15 | 26.41 | 27.49 | |
NLR-CS | 16.24 | 20.57 | 24.44 | 27.49 | 29.52 | |
Proposed | 16.66 | 21.27 | 25.48 | 29.10 | 32.29 | |
Foreman | TVAL3 | 2.44 | 10.16 | 17.40 | 19.67 | 21.48 |
TVNLR | 3.71 | 11.93 | 20.33 | 22.51 | 24.21 | |
BM3D-CS | 14.58 | 19.63 | 24.33 | 28.41 | 31.89 | |
NLR-CS | 14.94 | 19.77 | 24.47 | 28.89 | 32.74 | |
Proposed | 15.26 | 20.28 | 25.10 | 29.68 | 33.88 | |
House | TVAL3 | 3.82 | 10.40 | 16.37 | 22.39 | 25.75 |
TVNLR | 5.15 | 12.61 | 20.65 | 25.06 | 27.78 | |
BM3D-CS | 15.69 | 19.62 | 24.19 | 29.07 | 30.62 | |
NLR-CS | 15.92 | 20.62 | 25.16 | 29.34 | 32.89 | |
Proposed | 16.30 | 21.23 | 25.94 | 30.35 | 34.27 | |
Peppers | TVAL3 | 2.78 | 8.36 | 14.63 | 16.16 | 23.48 |
TVNLR | 2.98 | 10.05 | 16.07 | 18.35 | 26.96 | |
BM3D-CS | 15.41 | 19.16 | 23.35 | 27.51 | 28.33 | |
NLR-CS | 16.39 | 20.75 | 24.58 | 28.47 | 30.26 | |
Proposed | 16.80 | 21.42 | 25.58 | 29.09 | 31.89 | |
Monarch | TVAL3 | 3.74 | 10.22 | 18.09 | 23.15 | 25.94 |
TVNLR | 4.66 | 11.49 | 21.16 | 24.26 | 26.42 | |
BM3D-CS | 15.86 | 20.57 | 24.03 | 26.58 | 28.08 | |
NLR-CS | 16.53 | 21.37 | 24.52 | 28.39 | 29.90 | |
Proposed | 16.99 | 21.43 | 25.51 | 29.31 | 32.97 | |
Parrots | TVAL3 | 2.86 | 13.87 | 20.91 | 24.85 | 25.93 |
TVNLR | 4.82 | 16.47 | 21.76 | 25.71 | 26.52 | |
BM3D-CS | 15.14 | 19.83 | 24.80 | 27.66 | 29.19 | |
NLR-CS | 16.19 | 20.21 | 25.67 | 29.04 | 32.14 | |
Proposed | 16.57 | 21.41 | 26.95 | 30.14 | 33.87 | |
Testpat1 | TVAL3 | −2.18 | 2.67 | 6.48 | 12.55 | 16.59 |
TVNLR | −1.65 | 3.97 | 7.97 | 13.75 | 17.89 | |
BM3D-CS | 12.87 | 17.03 | 21.12 | 23.58 | 24.79 | |
NLR-CS | 11.45 | 14.85 | 17.48 | 19.09 | 20.78 | |
Proposed | 11.80 | 15.59 | 18.92 | 21.51 | 23.22 | |
Testpat2 | TVAL3 | −4.77 | 2.93 | 7.10 | 9.88 | 16.78 |
TVNLR | −2.78 | 3.12 | 7.84 | 13.68 | 19.10 | |
BM3D-CS | 10.41 | 14.29 | 18.92 | 22.36 | 25.17 | |
NLR-CS | 10.94 | 15.07 | 19.99 | 23.11 | 26.64 | |
Proposed | 11.18 | 15.60 | 20.24 | 24.43 | 28.94 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, K.; Qin, Y.; Zheng, H.; Ren, H.; Hu, Y. Nonlocal Low-Rank Regularization Combined with Bilateral Total Variation for Compressive Sensing Image Reconstruction. Electronics 2021, 10, 385. https://doi.org/10.3390/electronics10040385
Zhang K, Qin Y, Zheng H, Ren H, Hu Y. Nonlocal Low-Rank Regularization Combined with Bilateral Total Variation for Compressive Sensing Image Reconstruction. Electronics. 2021; 10(4):385. https://doi.org/10.3390/electronics10040385
Chicago/Turabian StyleZhang, Kunhao, Yali Qin, Huan Zheng, Hongliang Ren, and Yingtian Hu. 2021. "Nonlocal Low-Rank Regularization Combined with Bilateral Total Variation for Compressive Sensing Image Reconstruction" Electronics 10, no. 4: 385. https://doi.org/10.3390/electronics10040385
APA StyleZhang, K., Qin, Y., Zheng, H., Ren, H., & Hu, Y. (2021). Nonlocal Low-Rank Regularization Combined with Bilateral Total Variation for Compressive Sensing Image Reconstruction. Electronics, 10(4), 385. https://doi.org/10.3390/electronics10040385