An Introductory Tutorial on Brain–Computer Interfaces and Their Applications
Abstract
:1. Introduction
- the main aspects of BCI systems related to signal acquisition and processing,
- the electrophysiological signals characteristics,
- BCI applications to controlling robots and vehicles, assistive devices, and generally automation.
2. BCI Systems: Interaction Modality and Signal Processing Technique
2.1. BCI Systems Classification
2.2. Elicitation of Brain Signals
- Active: In this instance, a BCI system acquires and translates neural data generated by users who are voluntarily engaged in predefined cognitive tasks for the purpose of “driving” the BCI.
- Reactive: Such an instance makes use of neural data generated when users react to stimuli, often visual or tactile.
- Passive: Such an instance refers to the case that a BCI serves to acquire neural data generated when users are engaged in cognitively demanding tasks.
- Hybrid: Such an instance is a mixture of active, reactive, and passive BCI and possibly a further data acquisition system.
2.3. Syncronous and Asyncronous Interaction
2.4. Preprocessing and Processing Techniques
2.5. Use of BCI in Medical and General Purpose Applications
2.6. Ethical and Legal Issues in BCI
2.7. Data Security
2.8. Performance Metrics
2.9. Further Readings in BCI Challenges and Current Issues
3. Electrophysiological Recordings for Brain–Computer Interfacing
3.1. Electrodes Locations in Encephalography
3.2. Event-Related Potentials
3.3. Evoked Potentials
3.4. Event-Related Desynchronisation/Synchronization
4. Progress on Applications of Brain–Computer Interfaces to Control and Automation
4.1. Application to Unmanned Vehicles and Robotics
4.2. Application to “Smart Home” and Virtual Reality
4.3. Application to Mobile Robotics and Interaction with Robotic Arms
4.4. Application to Robotic Arms, Robotic Tele-Presence, and Electrical Prosthesis
4.5. Application to Wheelchair Control and Autonomous Vehicles
5. Current Limitations and Challenges of the BCI Technologies
- inaccuracy in terms of classifying neural activity;
- limited ability to read brain signals for those BCIs placed outside of the skull;
- in limited cases, requirement for pretty drastic surgery;
- amount of ethical issues due to reading people’s inner thoughts;
- the bulky nature of the system leading to possibly uncomfortable user experience; and
- the security of personal data not being guaranteed against attackers or intruders.
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
Acronym | Meaning |
ALS | Amyotrophic lateral sclerosis |
AO | Action observation |
BBI | Brain-to-brain interface |
BCI | Brain–computer interface |
BMI | Brain–machine interface |
BSS | Blind source separation |
CCA | Canonical correlation analysis |
CSP | Common spatial pattern |
DBS | Deep brain stimulation |
ECoG | Electrocorticogram |
EEG | Electroencephalogram |
ELM | Extreme learning machine |
EOG | Electrooculogram |
EP | Evoked potential |
ER | Evoked response |
ERD | Event-related desynchronisation |
ERP | Event-related potential |
ERS | Event-related synchronisation |
fMRI | Functional Magnetic Resonance Imaging |
GUI | Graphical user interface |
ICA | Independent component analysis |
InfoMax | Information maximisation |
LDA | Linear discriminant analysis |
LED | Light-emitting diode |
MEG | Magnetoencephalogram |
MI | Motor imagery |
MRI | Magnetic resonance imaging |
PET | Positron emission tomography |
PM | Passive movement |
RFID | Radio-frequency identification |
SOBI | Second-order blind identification |
SSVEP | Steady-state visually evoked potential |
SVM | Support vector machine |
UPnP | Universal plug and play |
References
- Pfurtscheller, G.; Neuper, C.; Birbaumer, N. Human Brain-Computer Interface; CRC Press: Boca Raton, FL, USA, 2005; pp. 1–35. [Google Scholar]
- Wolpaw, J.R.; Birbaumer, N.; McFarland, D.J.; Pfurtscheller, G.; Vaughan, T.M. Brain-computer interfaces for communication and control. Clin. Neurophysiol. 2002, 113, 767–791. [Google Scholar] [CrossRef]
- Nicolelis, M. Beyond Boundaries; St. Martin’s Press: New York, NY, USA, 2012. [Google Scholar]
- Draguhn, A.; Buzsáki, G. Neuronal oscillations in cortical networks. Science 2004, 304, 1926–1929. [Google Scholar]
- Thut, G.; Schyns, P.G.; Gross, J. Entrainment of perceptually relevant brain oscillations by non-invasive rhythmic stimulation of the human brain. Front. Psychol. 2011, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cox, R.; van Driel, J.; de Boer, M.; Talamini, L.M. Slow Oscillations during Sleep Coordinate Interregional Communication in Cortical Networks. J. Neurosci. 2014, 34, 16890–16901. [Google Scholar] [CrossRef] [PubMed]
- Fontolan, L.; Krupa, M.; Hyafil, A.; Gutkin, B. Analytical insighFts on Theta-Gamma coupled neural oscillators. J. Math. Neurosci. 2013, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ritter, P.; Born, J.; Brecht, M.; Dinse, H.R.; Heinemann, U.; Pleger, B.; Schmitz, D.; Schreiber, S.; Villringer, A.; Kempter, R. State-dependencies of learning across brain scales. Front. Comput. Neurosci. 2015, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santhanam, G.; Ryu, S.I.; Yu, B.M.; Afshar, A.; Shenoy, K.V. A high-performance brain-computer interface. Nature 2006, 442, 195–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackson, M.M.; Mappus, R. Applications for brain-computer interfaces. In Brain-Computer Interfaces; Springer: London, UK, 2010; pp. 89–103. [Google Scholar] [CrossRef]
- Niedermeyer, E.; Da Silva, F. Electroencephalography: Basic Principles, Clinical Applications, and Related Fields; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2005. [Google Scholar]
- Sutter, E. The Brain Response Interface: Communication Through Visually-induced Electrical Brain Responses. J. Microcomput. Appl. 1992, 15, 31–45. [Google Scholar] [CrossRef]
- Becedas, J. Brain Machine Interfaces: Basis and Advances. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 2012, 42, 825–836. [Google Scholar] [CrossRef]
- Erp, J.V.; Lotte, F.; Tangermann, M. Brain-computer interfaces: Beyond medical applications. Comput. IEEE Comput. Soc. 2012, 45, 26–34. [Google Scholar] [CrossRef] [Green Version]
- LaRocco, J.; Paeng, D.G. Optimizing Computer–Brain Interface Parameters for Non-invasive Brain-to-Brain Interface. Front. Neuroinform. 2020, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bos, D.P.; Reuderink, B.; van de Laar, B.; Gürkök, H.; Mühl, C.; Poel, M.; Nijholt, A.; Heylen, D. Brain-Computer Interfacing and Games. In Brain-Computer Interfaces—Applying our Minds to Human-Computer Interaction; Tan, D.S., Nijholt, A., Eds.; Human-Computer Interaction Series; Springer: London, UK, 2010; pp. 149–178. [Google Scholar] [CrossRef]
- Nijholt, A. BCI for games: A ‘state of the art’ survey. In Entertainment Computing—ICEC 2008, Proceedings of the 7th International Conference, Pittsburgh, PA, USA, 25–27 September 2008; Springer: Berlin/Heidelberg, Germany, 2008; pp. 225–228. [Google Scholar]
- Aricò, P.; Borghini, G.; Di Flumeri, G.; Sciaraffa, N.; Babiloni, F. Passive BCI beyond the LAB: Current Trends and Future Directions. Physiol. Meas. 2018, 39. [Google Scholar] [CrossRef]
- Xu, B.; Li, W.; He, X.; Wei, Z.; Zhang, D.; Wu, C.; Song, A. Motor Imagery Based Continuous Teleoperation Robot Control with Tactile Feedback. Electronics 2020, 9, 174. [Google Scholar] [CrossRef] [Green Version]
- Korovesis, N.; Kandris, D.; Koulouras, G.; Alexandridis, A. Robot Motion Control via an EEG-Based Brain–Computer Interface by Using Neural Networks and Alpha Brainwaves. Electronics 2019, 8, 1387. [Google Scholar] [CrossRef] [Green Version]
- Blankertz, B.; Acqualagna, L.; Dähne, S.; Haufe, S.; Kraft, M.; Sturm, I.; Ušćumlic, M.; Wenzel, M.; Curio, G.; Müller, K. The Berlin Brain-Computer Interface: Progress Beyond Communication and Control. Front. Neurosci. 2016, 10. [Google Scholar] [CrossRef] [Green Version]
- Bamdad, M.; Zarshenas, H.; Auais, M.A. Application of BCI systems in neurorehabilitation: A scoping review. Disabil. Reabil. Assist. Technol. 2014, 10, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Vansteensel, M.; Jarosiewicz, B. Brain-computer interfaces for communication. Handb. Clin. Neurol. 2020, 168, 65–85. [Google Scholar] [CrossRef]
- Aricò, P.; Sciafarra, N.; Babiloni, F. Brain–Computer Interfaces: Toward a Daily Life Employment. Brain Sci. 2020, 10, 157. [Google Scholar] [CrossRef] [Green Version]
- Di Flumeri, G.; De Crescenzio, F.; Berberian, B.; Ohneiser, O.; Kramer, J.; Aricò, P.; Borghini, G.; Babiloni, F.; Bagassi, S.; Piastra, S. Brain–Computer Interface-Based Adaptive Automation to Prevent Out-Of-The-Loop Phenomenon in Air Traffic Controllers Dealing With Highly Automated Systems. Front. Hum. Neurosci. 2019, 13. [Google Scholar] [CrossRef] [Green Version]
- Borghini, G.; Aricò, P.; Di Flumeri, G.; Sciaraffa, N.; Colosimo, A.; Herrero, M.T.; Bezerianos, A.; Thakor, N.V.; Babiloni, F. A new perspective for the training assessment: Machine learning-based neurometric for augmented user’s evaluation. Front. Hum. Neurosci. 2017, 11. [Google Scholar] [CrossRef]
- Aricò, P.; Reynal, M.; Di Flumeri, G.; Borghini, G.; Sciaraffa, N.; Imbert, J.P.; Hurter, C.; Terenzi, M.; Ferreira, A.; Pozzi, S.; et al. How neurophysiological measures can be used to enhance the evaluation of remote tower solutions. Front. Hum. Neurosci. 2019, 13. [Google Scholar] [CrossRef]
- Schettini, F.; Aloise, F.; Aricò, P.; Salinari, S.; Mattia, D.; Cincotti, F. Self-calibration algorithm in an asynchronous P300-based brain–computer interface. J. Neural Eng. 2014, 11, 035004. [Google Scholar] [CrossRef]
- Rezeika, A.; Benda, M.; Stawicki, P.; Gembler, F.; Saboor, A.; Volosyak, I. Brain–Computer Interface Spellers: A review. Brain Sci. 2018, 8, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diya, S.Z.; Prorna, R.A.; Rahman, I.; Islam, A.; Islam, M. Applying brain-computer interface technology for evaluation of user experience in playing games. In Proceedings of the 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE), Cox’sBazar, Bangladesh, 7–9 February 2019. [Google Scholar]
- Rosca, S.D.; Leba, M. Design of a brain-controlled video game based on a BCI system. MATEC Web Conf. 2019, 290, 01019. [Google Scholar] [CrossRef] [Green Version]
- Abbasi-Asl, R.; Keshavarzi, M.; Chan, D. Brain-computer interface in virtual reality. In Proceedings of the 9th International IEEE/EMBS Conference on Neural Engineering (NER), San Francisco, CA, USA, 20–23 March 2019; pp. 1220–1224. [Google Scholar]
- Zhong, S.; Liu, Y.; Yu, Y.; Tang, J.; Zhou, Z.; Hu, D. A dynamic user interface based BCI environmental control system. Int. J. Hum. Comput. Interact. 2020, 36, 55–66. [Google Scholar] [CrossRef]
- Kim, M.; Kim, M.K.; Hwang, M.; Kim, H.Y.; Cho, J.; Kim, S.P. Online Home Appliance Control Using EEG-Based Brain–Computer Interfaces. Electronics 2019, 8, 1101. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Garrison, H.; Battison, A.; Gabel, L. Control of a Quadcopter with Hybrid Brain-Computer Interface. In Proceedings of the 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), Bari, Italy, 6–9 October 2019; pp. 2779–2784. [Google Scholar]
- Nicolas-Alonso, L.F.; Gomez-Gil, J. Brain computer interfaces, a review. Sensors 2012, 12, 1211–1279. [Google Scholar] [CrossRef] [PubMed]
- Hochberg, L.; Donoghue, J. Sensors for brain-computer interfaces. IEEE Eng. Med. Biol. Mag. 2006, 25, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Birbaumer, N.; Murguialday, A.R.; Cohen, L. Brain-computer interface in paralysis. Curr. Opin. Neurol. 2008, 21, 634–638. [Google Scholar] [CrossRef] [PubMed]
- Sitaram, R.; Weiskopf, N.; Caria, A.; Veit, R.; Erb, M.; Birbaumer, N. fMRI brain-computer interfaces. IEEE Signal Process. Mag. 2008, 25, 95–106. [Google Scholar] [CrossRef]
- Leuthardt, E.C.; Miller, K.J.; Schalk, G.; Rao, R.P.N.; Ojemann, J.G. Electrocorticography-based brain computer interface—The Seattle experience. IEEE Trans. Neural Syst. Rehabil. Eng. 2006, 14, 194–198. [Google Scholar] [CrossRef]
- Singh, S.P. Magnetoencephalography: Basic principles. Annals Indian Acad. Neurol. 2014, 17 (Suppl. 1), S107–S112. [Google Scholar] [CrossRef] [PubMed]
- Mandal, P.K.; Banerjee, A.; Tripathi, M.; Sharma, A. A Comprehensive Review of Magnetoencephalography (MEG) Studies for Brain Functionality in Healthy Aging and Alzheimer’s Disease (AD). Front. Comput. Neurosci. 2018, 12, 60. [Google Scholar] [CrossRef]
- Keppler, J.S.; Conti, P.S. A Cost Analysis of Positron Emission Tomography. Am. J. Roentgenol. 2001, 177, 31–40. [Google Scholar] [CrossRef]
- Vaquero, J.J.; Kinahan, P. Positron Emission Tomography: Current Challenges and Opportunities for Technological Advances in Clinical and Preclinical Imaging Systems. Annu. Rev. Biomed. Eng. 2015, 17, 385–414. [Google Scholar] [CrossRef] [Green Version]
- Queiroz, M.A.; de Galiza Barbosa, F.; Buchpiguel, C.A.; Cerri, G.G. Positron emission tomography/magnetic resonance imaging (PET/MRI): An update and initial experience at HC-FMUSP. Rev. Assoc. MéDica Bras. 2018, 64, 71–84. [Google Scholar] [CrossRef] [Green Version]
- Lu, W.; Dong, K.; Cui, D.; Jiao, Q.; Qiu, J. Quality assurance of human functional magnetic resonance imaging: A literature review. Quant. Imaging Med. Surg. 2019, 9, 1147. [Google Scholar] [CrossRef]
- Bielczyk, N.Z.; Uithol, S.; van Mourik, T.; Anderson, P.; Glennon, J.C.; Buitelaar, J.K. Disentangling causal webs in the brain using functional magnetic resonance imaging: A review of current approaches. Netw. Neurosci. 2019, 3, 237–273. [Google Scholar] [CrossRef]
- Silva, A.; Merkle, H. Hardware considerations for functional magnetic resonance imaging. Concepts Magn. Reson. Educ. J. 2003, 16, 35–49. [Google Scholar] [CrossRef]
- Shokoueinejad, M.; Park, D.W.; Jung, Y.; Brodnick, S.; Novello, J.; Dingle, A.; Swanson, K.; Baek, D.H.; Suminski, A.; Lake, W.; et al. Progress in the field of micro-electrocorticography. Micromachines 2019, 10, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar Mudgal, S.; Sharma, S.; Chaturvedi, J.; Sharma, A. Brain computer interface advancement in neurosciences: Applications and issues. Interdiscip. Neurosurg. 2020, 20, 100694. [Google Scholar] [CrossRef]
- Spychala, N.; Debener, S.; Bongartz, E.; Müller, H.; Thorne, J.; Philipsen, A.; Braun, N. Exploring Self-Paced Embodiable Neurofeedback for Post-stroke Motor Rehabilitation. Front. Hum. Neurosci. 2020, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pascual-Leone, A.; Amedi, A.; Fregni, F.; Merabet, L.B. The plastic human brain cortex. Annu. Rev. Neurosci. 2005, 28, 377–401. [Google Scholar] [CrossRef] [Green Version]
- Friehs, G.M.; Zerris, V.A.; Ojakangas, C.L.; Fellows, M.R.; Donoghue, J.P. Brain-machine and brain-computer interfaces. Stroke 2004, 35, 2702–2705. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Fallegger, F.; Casse, B.; Fried, S. Implantable microcoils for intracortical magnetic stimulation. Sci. Adv. 2016, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koch Fager, S.; Fried-Oken, M.; Jakobs, T.; Beukelman, D. New and emerging access technologies for adults with complex communication needs and severe motor impairments: State of the science. Augment. Altern. Commun. 2019, 35, 13–25. [Google Scholar] [CrossRef]
- Bočková, M.; Rektor, I. Impairment of brain functions in Parkinson’s disease reflected by alterations in neural connectivity in EEG studies: A viewpoint. Clin. Neurophysiol. 2019, 130, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Borhani, S.; Abiri, R.; Jiang, Y.; Berger, T.; Zhao, X. Brain connectivity evaluation during selective attention using EEG-based brain-computer interface. Brain-Comput. Interfaces 2019, 6, 25–35. [Google Scholar] [CrossRef]
- Borton, D.A.; Yin, M.; Aceros, J.; Nurmikko, A. An implantable wireless neural interface for recording cortical circuit dynamics in moving primates. J. Neural Eng. 2013, 10, 026010. [Google Scholar] [CrossRef] [Green Version]
- Dethier, J.; Nuyujukian, P.; Ryu, S.; Shenoy, K.; Boahen, K. Design and validation of a real-time spiking-neural-network decoder for brain-machine interfaces. J. Neural Eng. 2013, 10, 036008. [Google Scholar] [CrossRef] [Green Version]
- Benabid, A.; Costecalde, T.; Eliseyev, A.; Charvet, G.; Verney, A.; Karakas, S.; Foerster, M.; Lambert, A.; Morinière, B.; Abroug, N.; et al. An exoskeleton controlled by an epidural wireless brain–machine interface in a tetraplegic patient: A proof-of-concept demonstration. Lancet Neurol. 2019, 18, 1112–1122. [Google Scholar] [CrossRef]
- Al Ajrawi, S.; Al-Hussaibi, W.; Rao, R.; Sarkar, M. Efficient balance technique for brain-computer interface applications based on I/Q down converter and time interleaved ADCs. Inform. Med. Unlocked 2020, 18, 100276. [Google Scholar] [CrossRef]
- Wahlstrom, K.; Fairweather, B.; Ashman, H. Privacy and brain-computer interfaces: Method and interim findings. ORBIT J. 2017, 1, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Daly, J.J.; Wolpaw, J.R. Brain-computer interfaces in neurological rehabilitation. Lancet Neurol. 2008, 7, 1032–1043. [Google Scholar] [CrossRef]
- Thomas, K.P.; Guan, C.; Lau, C.T.; Vinod, A.P.; Ang, K.K. A new discriminative common spatial pattern method for motor imagery brain-computer interfaces. IEEE Trans. Biomed. Eng. 2009, 56, 2730–2733. [Google Scholar] [CrossRef]
- Lenhardt, A.; Kaper, M.; Ritter, H.J. An adaptive P300-based online brain-computer interface. IEEE Trans. Neural Syst. Rehabil. Eng. 2008, 16, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Xia, B.; Li, X.; Xie, H.; Yang, W.; Li, J.; He, L. Asynchronous brain-computer interface based on steady-state visual-evoked potential. Cogn. Comput. 2013, 5, 243–251. [Google Scholar] [CrossRef]
- Pfurtscheller, G.; Allison, B.Z.; Brunner, C.; Bauernfeind, G.; Escalante, T.S.; Scherer, R.; Zander, T.D.; Putz, G.M.; Neuper, C.; Birbaumer, N. The Hybrid BCI. Front. Neurosci. 2010, 4, 3. [Google Scholar] [CrossRef]
- Kwon, M.; Cho, H.; Won, K.; Ahn, M.; Jun, S. Use of both eyes-open and eyes-closed resting states may yield a more robust predictor of motor imagery BCI performance. Electronics 2020, 9, 690. [Google Scholar] [CrossRef]
- Ahn, M.; Cho, H.; Ahn, S.; Jun, S.C. High theta and low alpha powers may be indicative of BCI-illiteracy in motor imagery. PLoS ONE 2013, 8, e80886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaiser, V.; Kreilinger, A.; Müller-Putz, G.R.; Neuper, C. First steps toward a motor imagery based stroke BCI: New strategy to set up a classifier. Front. Neurosci. 2011, 5, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riccio, A.; Simione, L.; Schettini, F.; Pizzimenti, A.; Inghilleri, M.; Belardinelli, M.O.; Mattia, D.; Cincotti, F. Attention and P300-based BCI performance in people with amyotrophic lateral sclerosis. Front. Hum. Neurosci. 2013, 7, 732. [Google Scholar] [CrossRef] [Green Version]
- Brouwer, A.M.; van Erp, J.B.F. A tactile P300 brain-computer interface. Front. Neurosci. 2010, 4, 19. [Google Scholar] [CrossRef] [Green Version]
- Cai, Z.; Makino, S.; Rutkowski, T.M. Brain evoked potential latencies optimization for spatial auditory brain-computer interface. Cogn. Comput. 2015, 7, 34–43. [Google Scholar] [CrossRef] [Green Version]
- Martišius, I.; Damasevicius, R. A prototype SSVEP based real time BCI gaming system. Comput. Intell. Neurosci. 2016, 2016, 3861425. [Google Scholar] [CrossRef] [Green Version]
- Pfurtscheller, G.; Neuper, C. Motor Imagery and Direct Brain-Computer Communication. Proc. IEEE 2001, 89, 1123–1134. [Google Scholar] [CrossRef]
- Aloise, F.; Aricò, P.; Schettini, F.; Salinari, S.; Mattia, D.; Cincotti, F. Asynchronous gaze-independent event-related potential-based brain-computer interface. Artif. Intell. Med. 2013, 59, 61–69. [Google Scholar] [CrossRef]
- Wolpaw, J.R.; Birbaumer, N.; Heetderks, W.J.; McFarland, D.J.; Peckham, H.P.; Gerwin, S.; Emanuel, D.; Quatrano, L.A.; Robinson, C.J.; Vaughan, T.M. Brain-Computer Interface Technology: A Review of the First International Meeting. IEEE Trans. Rehabil. Eng. 2000, 8, 222–226. [Google Scholar] [CrossRef] [Green Version]
- Luzheng, B.; Xin-An, F.; Yili, L. EEG-Based Brain-Controlled Mobile Robots: A Survey. IEEE Trans. Hum. Mach. Syst. 2013, 43, 161–176. [Google Scholar] [CrossRef]
- Han, C.H.; Müller, K.R.; Hwang, H.J. Brain-switches for asynchronous brain–computer interfaces: A systematic review. Electronics 2020, 9, 422. [Google Scholar] [CrossRef] [Green Version]
- Suefusa, K.; Tanaka, T. Asynchronous brain-computer interfacing based on mixed-coded visual stimuli. IEEE Trans. Biomed. Eng. 2018, 65, 2119–2129. [Google Scholar] [CrossRef]
- Bin, G.; Gao, X.; Wang, Y.; Li, Y.; Hong, B.; Gao, S. A high-speed BCI based on code modulation VEP. J. Neural Eng. 2011, 8, 025015. [Google Scholar] [CrossRef] [PubMed]
- Huan, N.J.; Palaniappan, R. Neural network classification of autoregressive features from electroencephalogram signals for brain-computer interface design. J. Neural Eng. 2004, 1, 142–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butkevičiūtė, E.; Bikulciene, L.; Sidekerskiene, T.; Blazauskas, T.; Maskeliunas, R.; Damasevicius, R.; Wei, W. Removal of movement artefact for mobile EEG analysis in sports exercises. IEEE Access 2019, 7, 7206–7217. [Google Scholar] [CrossRef]
- Di Flumeri, G.; Aricò, P.; Borghini, G.; Colosimo, A.; Babiloni, F. A new regression-based method for the eye blinks artifacts correction in the EEG signal, without using any EOG channel. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 6–20 August 2016; Volume 59, pp. 3187–3190. [Google Scholar] [CrossRef]
- Jirayucharoensak, S.; Israsena, P. Automatic removal of EEG artifacts using ICA and Lifting Wavelet Transform. In Proceedings of the 2013 International Computer Science and Engineering Conference (ICSEC), Nakhonpathom, Thailand, 4–6 September 2013; pp. 136–139. [Google Scholar] [CrossRef]
- Zhang, X.; Vialatte, F.B.; Chen, C.; Rathi, A.; Dreyfus, G. Embedded implementation of second-order blind identification (SOBI) for real-time applications in neuroscience. Cogn. Comput. 2014, 7, 56–63. [Google Scholar] [CrossRef]
- Argunşah, A.; Çetin, M. A brain-computer interface algorithm based on Hidden Markov models and dimensionality reduction. In Proceedings of the 2010 IEEE 18th Signal Processing and Communications Applications Conference, Diyarbakir, Turkey, 22–24 April 2010; pp. 93–96. [Google Scholar]
- Li, J.; Chen, X.; Li, Z. Spike detection and spike sorting with a hidden Markov model improves offline decoding of motor cortical recordings. J. Neural Eng. 2019, 16. [Google Scholar] [CrossRef] [PubMed]
- Duan, L.; Zhong, H.; Miao, J.; Yang, Z.; Ma, W.; Zhang, X. A voting optimized strategy based on ELM for improving classification of motor imagery BCI data. Cogn. Comput. 2014, 6, 477–483. [Google Scholar] [CrossRef]
- Banitalebi, A.; Setarehdan, S.K.; Hossein-Zadeh, G.A. A technique based on chaos for brain computer interfacing. In Proceedings of the 14th International CSI Computer Conference, Tehran, Iran, 20–21 October 2009; pp. 464–469. [Google Scholar] [CrossRef] [Green Version]
- Thulasidas, M.; Guan, C.; Wu, J. Robust classification of EEG signal for brain-computer interface. IEEE Trans. Neural Syst. Rehabil. Eng. 2006, 14, 24–29. [Google Scholar] [CrossRef]
- van Gerven, M.; Farquhar, J.; Schaefer, R.; Vlek, R.; Geuze, J.; Nijholt, A.; Ramsey, N.; Haselager, P.; Vuurpijl, L.; Gielen, S.; et al. The brain-computer interface cycle. J. Neural Eng. 2009, 6, 041001. [Google Scholar] [CrossRef]
- Ryu, S.; Shenoy, K. Human cortical prostheses: Lost in translation? Neurosurgical Focus FOC 2009, 27, E5. [Google Scholar] [CrossRef] [PubMed]
- Bloch, E.; Luo, Y.; da Cruz, L. Advances in retinal prosthesis systems. Ther. Adv. Ophthalmol. 2019, 11. [Google Scholar] [CrossRef] [PubMed]
- Zeng, F.G. Trends in cochlear implants. Trends Amplif. 2004, 8, 1–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rothschild, R.M. Neuroengineering tools/applications for bidirectional interfaces, brain–computer interfaces, and neuroprosthetic implants—A review of recent progress. Front. Neuroeng. 2010, 3, 112. [Google Scholar] [CrossRef] [Green Version]
- Krishna, N.; Sekaran, K.; Annepu, V.; Vamsi, N.; Ghantasala, G.; Pethakamsetty, C.; Kadry, S.; Blazauskas, T.; Damasevicius, R. An Efficient Mixture Model Approach in Brain-Machine Interface Systems for Extracting the Psychological Status of Mentally Impaired Persons Using EEG Signals. IEEE Access 2019, 7, 77905–77914. [Google Scholar] [CrossRef]
- Damasevicius, R.; Maskeliunas, R.; Kazanavicius, E.; Woźniak, M. Combining Cryptography with EEG Biometrics. Comput. Intell. Neurosci. 2018, 2018, 1867548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Saggaf, A. Secure method for combining cryptography with iris biometrics. J. Univers. Comput. Sci. 2018, 24, 341–356. [Google Scholar]
- Zhang, C.; Kimura, Y.; Higashi, H.; Tanaka, T. A simple platform of brain-controlled mobile robot and its implementation by SSVEP. In Proceedings of the 2012 International Joint Conference on Neural Networks (IJCNN), Brisbane, QLD, Australia, 10–15 June 2012; pp. 1–7. [Google Scholar]
- Edelman, B.; Meng, J.; Suma, D.; Zurn, C.; Nagarajan, E.; Baxter, B.; Cline, C.; He, B. Noninvasive neuroimaging enhances continuous neural tracking for robotic device control. Sci. Robots 2019, 4. [Google Scholar] [CrossRef] [PubMed]
- Bockbrader, M. Upper limb sensorimotor restoration through brain–computer interface technology in tetraparesis. Curr. Opin. Biomed. Eng. 2019, 11, 85–101. [Google Scholar] [CrossRef]
- Lécuyer, A.; Lotte, F.; Reilly, R.B.; Leeb, R.; Hirose, M.; Slater, M. Brain–computer interfaces, virtual reality, and videogames. Computer 2008, 41, 66–72. [Google Scholar] [CrossRef] [Green Version]
- Yuan, P.; Wang, Y.; Gao, X.; Jung, T.P.; Gao, S. A Collaborative Brain-Computer Interface for Accelerating Human Decision Making. In Universal Access in Human-Computer Interaction. Design Methods, Tools, and Interaction Techniques for eInclusion; Lecture Notes in Computer Science; Stephanidis, C., Antona, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 8009, pp. 672–681. [Google Scholar] [CrossRef]
- Bianchi, L.; Gambardella, F.; Liti, C.; Piccialli, V. Group study via collaborative BCI. In Proceedings of the 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), Bari, Italy, 6–9 October 2019; pp. 272–276. [Google Scholar] [CrossRef]
- Kapeller, C.; Ortner, R.; Krausz, G.; Bruckner, M.; Allison, B.; Guger, C.; Edlinger, G. Toward Multi-brain Communication: Collaborative Spelling with a P300 BCI. In Foundations of Augmented Cognition. Advancing Human Performance and Decision-Making through Adaptive Systems, Proceedings of the AC 2014, Heraklion, Crete, Greece, 22–27 June 2014; Lecture Notes in Computer Science; Schmorrow, D.D., Fidopiastis, C.M., Eds.; Springer: Cham, Switzerland, 2014; Volume 8534, pp. 47–54. [Google Scholar] [CrossRef]
- Papanastasiou, G.; Drigas, A.; Skianis, C.; Lytras, M. Brain computer interface based applications for training and rehabilitation of students with neurodevelopmental disorders. A literature review. Heliyon 2020, 6, e04250. [Google Scholar] [CrossRef]
- Aricò, P.; Borghini, G.; Di Flumeri, G.; Sciaraffa, N.; Colosimo, A.; Babiloni, F. Passive BCI in operational environments: Insights, recent advances, and future trends. IEEE Trans. Biomed. Eng. 2017, 64, 1431–1436. [Google Scholar] [CrossRef] [PubMed]
- Aricò, P.; Borghini, G.; Di Flumeri, G.; Bonelli, S.; Golfetti, A.; Graziani, I. Human Factors and Neurophysiological Metrics in Air Traffic Control: A Critical Review. IEEE Rev. Biomed. Eng. 2017, 13. [Google Scholar] [CrossRef]
- Burwell, S.; Sample, M.; Racine, E. Ethical aspects of brain computer interfaces: A scoping review. BMC Med. Ethics 2017, 18, 60. [Google Scholar] [CrossRef] [PubMed]
- Klein, E.; Peters, B.; Higger, M. Ethical considerations in ending exploratory brain-computer interface research studies in locked-in syndrome. Camb. Q. Healthc. Ethics 2018, 27, 660–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vlek, R.J.; Steines, D.; Szibbo, D.; Kübler, A.; Schneider, M.J.; Haselager, P.; Nijboer, F. Ethical issues in brain-computer interface research, development, and dissemination. J. Neurol. Phys. Therapy 2012, 36, 94–99. [Google Scholar] [CrossRef]
- Schermer, M. Ethical issues in deep brain stimulation. Front. Integr. Neurosci. 2011, 5, 17. [Google Scholar] [CrossRef] [Green Version]
- Landau, O.; Cohen, A.; Gordon, S.; Nissim, N. Mind your privacy: Privacy leakage through BCI applications using machine learning methods. Knowl. Based Syst. 2020, 198, 105932. [Google Scholar] [CrossRef]
- Ajrawi, S.; Rao, R.; Sarkar, M. Cybersecurity in brain-computer interfaces: RFID-based design-theoretical framework. Inform. Med. Unlocked 2021, 22, 100489. [Google Scholar] [CrossRef]
- Li, Q.; Ding, D.; Conti, M. Brain-Computer Interface applications: Security and privacy challenges. In Proceedings of the 2015 IEEE Conference on Communications and Network Security (CNS), Florence, Italy, 28–30 September 2015; pp. 663–666. [Google Scholar] [CrossRef]
- Mowla, M.; Cano, R.; Dhuyvetter, K.; Thompson, D. Affective brain-computer interfaces: Choosing a meaningful performance measuring metric. Comput. Biol. Med. 2020, 126, 104001. [Google Scholar] [CrossRef] [PubMed]
- Gubert, P.; Costa, M.; Silva, C.; Trofino-Neto, A. The performance impact of data augmentation in CSP-based motor-imagery systems for BCI applications. Biomed. Signal Process. Control 2020, 62, 102152. [Google Scholar] [CrossRef]
- North, S.; Young, K.; Hamilton, M.; Kim, J.; Zhao, X.; North, M.; Cronnon, E. Brain-Computer Interface: An Experimental Analysis of Performance Measurement. In Proceedings of the IEEE SoutheastCon 2020, Raleigh, NC, USA, 28–29 March 2020; pp. 1–8. [Google Scholar] [CrossRef]
- Myers Briggs, I.; McCaulley, M.; Quenk, N.; A, H. MBTI Handbook: A Guide to the Development and Use of the Myers-Briggs Type Indicator, 3rd ed.; Consulting Psychologists Press: Sunnyvale, CA, USA, 1998. [Google Scholar]
- Yadav, D.; Yadav, S.; Veer, K. A comprehensive assessment of brain computer interfaces: Recent trends and challenges. J. Neurosci. Methods 2020, 346, 108918. [Google Scholar] [CrossRef] [PubMed]
- Kögel, J.; Jox, R.; Friedrich, O. What is it like to use a BCI?—Insights from an interview study with brain-computer interface users. BMC Med. Ethics 2020, 21, 2. [Google Scholar] [CrossRef] [PubMed]
- Wolpaw, J.R.; McFarland, D.J. Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. Natl. Acad. Sci. 2004, 101, 17849–17854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McFarland, D.J.; Wolpaw, J.R. Brain-computer interfaces for communication and control. Commun. ACM 2011, 54, 60–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Flumeri, G.; Aricò, P.; Borghini, G.; Sciaraffa, N.; Di Florio, A.; Babiloni, F. The Dry Revolution: Evaluation of Three Different EEG Dry Electrode Types in Terms of Signal Spectral Features, Mental States Classification and Usability. Sensors 2019, 19, 1365. [Google Scholar] [CrossRef] [Green Version]
- Malmivuo, J.; Plonsey, R. Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagnetic Fields; Oxford University Press: Oxford, UK, 1995. [Google Scholar] [CrossRef]
- Nuwer, M.R. Recording electrode site nomenclature. J. Clin. Neurophysiol. 1987, 4, 121. [Google Scholar] [CrossRef]
- Suarez, E.; Viegas, M.D.; Adjouadi, M.; Barreto, A. Relating induced changes in EEG signals to orientation of visual stimuli using the ESI-256 machine. Biomed. Sci. Instrum. 2000, 36, 33. [Google Scholar]
- Oostenveld, R.; Praamstra, P. The five percent electrode system for high-resolution EEG and ERP measurements. Clin. Neurophysiol. 2001, 112, 713–719. [Google Scholar] [CrossRef]
- Jurcak, V.; Tsuzuki, D.; Dan, I. 10/20, 10/10, and 10/5 systems revisited: Their validity as relative head-surface-based positioning systems. NeuroImage 2007, 34, 1600–1611. [Google Scholar] [CrossRef]
- Crosson, B.; Ford, A.; McGregor, K.M.; Meinzer, M.; Cheshkov, S.; Li, X.; Walker-Batson, D.; Briggs, R.W. Functional imaging and related techniques: An introduction for rehabilitation researchers. J. Rehabil. Res. Dev. 2010, 47, vii–xxxiv. [Google Scholar] [CrossRef] [PubMed]
- Dornhege, G.; Millan, J.d.R.; Hinterberger, T.; McFarland, D.; Muller, K.R. (Eds.) Toward Brain-Computer Interfacing; A Bradford Book; The MIT Press: Cambridge, MA, USA, 2007. [Google Scholar]
- Luck, S.J. An Introduction to the Event-Related Potential Technique; The MIT Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Picton, T.W. The P300 wave of the human event-related potential. J. Clin. Neurophysiol. 1992, 9, 456–479. [Google Scholar] [CrossRef]
- Sellers, E.W.; Donchin, E. A P300-based brain–computer interface: Initial tests by ALS patients. Clin. Neurophysiol. 2006, 117, 538–548. [Google Scholar] [CrossRef]
- Blankertz, B.; Dornhege, G.; Krauledat, M.; Schröder, M.; Williamson, J.; Murray, S.R.; Müller, K.R. The Berlin Brain-Computer Interface presents the novel mental typewriter Hex-o-Spell. Handb. Clin. Neurol. 2006, 113, 108–109. Available online: http://www.dcs.gla.ac.uk/~rod/publications/BlaDorKraSchWilMurMue06.pdf (accessed on 25 February 2021).
- Blankertz, B.; Krauledat, M.; Dornhege, G.; Williamson, J.; Murray, S.R.; Müller, K.R. A Note on Brain Actuated Spelling with the Berlin Brain-Computer Interface. Handb. Clin. Neurol. 2007, 4555, 759–768. [Google Scholar] [CrossRef] [Green Version]
- Treder, M.S.; Blankertz, B. Covert attention and visual speller design in an ERP-based brain-computer interface. Behav. Brain Funct. 2010, 6. [Google Scholar] [CrossRef] [Green Version]
- Treder, M.S.; Schmidt, N.M.; Blankertz, B. Gaze-independent brain-computer interfaces based on covert attention and feature attention. J. Neural Eng. 2011, 8, 066003. [Google Scholar] [CrossRef]
- Schreuder, M.; Blankertz, B.; Tangermann, M. A New Auditory Multi-Class Brain-Computer Interface Paradigm: Spatial Hearing as an Informative Cue. PLoS ONE 2010, 5, e9813. [Google Scholar] [CrossRef]
- Rader, S.; Holmes, J.; Golob, E. Auditory event-related potentials during a spatial working memory task. Clin. Neurophysiol. 2008, 119, 1176–1189. [Google Scholar] [CrossRef] [PubMed]
- Solon, A.; Lawhern, V.; Touryan, J.; McDaniel, J.; Ries, A.; Gordon, S. Decoding P300 variability using convolutional neural networks. Front. Hum. Neurosci. 2019, 13, 201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández-Rodríguez, A.; Medina-Juliá, M.; Velasco-Álvarez, F.; Ron-Angevin, R. Effects of spatial stimulus overlap in a visual P300-based brain-computer interface. Neuroscience 2020, 431, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Regan, D. Steady-state evoked potentials. J. Opt. Soc. Am. 1977, 67, 1475–1489. [Google Scholar] [CrossRef]
- Gao, X.; Xu, D.; Cheng, M.; Gao, S. A BCI-based environmental controller for the motion-disabled. IEEE Trans. Neural Syst. Rehabil. Eng. 2003, 11, 137–140. [Google Scholar]
- Middendorf, M.; McMillan, G.; Calhoun, G.; Jones, K.S. Brain-computer interfaces based on the steady-state visual-evoked response. IEEE Trans. Rehabil. Eng. 2000, 8, 211–214. [Google Scholar] [CrossRef] [Green Version]
- Fisher, R.S.; Harding, G.; Erba, G.; Barkley, G.L.; Wilkins, A. Photic- and Pattern-induced Seizures: A Review for the Epilepsy Foundation of America Working Group. Epilepsia 2005, 46, 1426–1441. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.; Bieger, J.; Molina, G.G.; Aarts, R.M. A survey of stimulation methods used in SSVEP-based BCIs. Comput. Intell. Neurosci. 2010, 10, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Vialatte, F.B.; Maurice, M.; Dauwels, J.; Cichocki, A. Steady-state visually evoked potentials: Focus on essential paradigms and future perspectives. Prog. Neurobiol. 2010, 90, 418–438. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gao, X.; Hong, B.; Jia, C.; Gao, S. Brain-computer interfaces based on visual evoked potentials. IEEE Eng. Med. Biol. Mag. 2008, 27, 64–71. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, P.; Cheng, K.; Yao, D. Multivariate synchronization index for frequency recognition of SSVEP-based brain-computer interface. J. Neurosci. Methods 2014, 221, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, X.; Gao, X.; Gao, S. A Benchmark Dataset for SSVEP-Based Brain-Computer Interfaces. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 1746–1752. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, M.; Wang, Y.; Wang, Y.t.; Jung, T.P. Does frequency resolution affect the classification performance of steady-state visual evoked potentials? In Proceedings of the 2017 8th International IEEE/EMBS Conference on Neural Engineering (NER), Shanghai, China, 25–28 May 2017; pp. 341–344. [Google Scholar] [CrossRef]
- Hotelling, H. Relations between two sets of variates. Biometrika 1936, 28, 321–377. [Google Scholar] [CrossRef]
- Anderson, T.W. An Introduction to Multivariate Statistical Analysis; Wiley: New York, NY, USA, 1958; Volume 2. [Google Scholar]
- Lin, Z.; Zhang, C.; Wu, W.; Gao, X. Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs. IEEE Trans. Biomed. Eng. 2006, 53, 2610–2614. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Y.; Gao, S.; Jung, T.P.; Gao, X. Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain-computer interface. J. Neural Eng. 2015, 12, 46008. [Google Scholar] [CrossRef] [PubMed]
- Rabiul Islam, M.; Khademul Islam Molla, M.; Nakanishi, M.; Tanaka, T. Unsupervised frequency-recognition method of SSVEPs using a filter bank implementation of binary subband CCA. J. Neural Eng. 2017, 14. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T.; Zhang, C.; Higashi, H. SSVEP frequency detection methods considering background EEG. In Proceedings of the 6th Joint International Conference on Soft Computing and Intelligent Systems (SCIS) and 13th International Symposium on Advanced Intelligent Systems (ISIS), Kobe, Japan, 20–24 November 2012; pp. 1138–1143. [Google Scholar]
- Wei, C.S.; Lin, Y.P.; Wang, Y.; Wang, Y.T.; Jung, T.P. Detection of steady-state visual-evoked potential using differential canonical correlation analysis. In Proceedings of the 6th International IEEE/EMBS Conference on Neural Engineering (NER), San Diego, CA, USA, 6–8 November 2013; pp. 57–60. [Google Scholar]
- Nakanishi, M.; Wang, Y.; Wang, Y.T.; Mitsukura, Y.; Jung, T.P. Enhancing unsupervised canonical correlation analysis-based frequency detection of SSVEPs by incorporating background EEG. In Proceedings of the 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Chicago, IL, USA, 26–30 August 2014; pp. 3053–3056. [Google Scholar]
- Nakanishi, M.; Wang, Y.; Wang, Y.T.; Mitsukura, Y.; Jung, T.P. A high-speed brain speller using steady-state visual evoked potentials. Int. J. Neural Syst. 2014, 24, 1450019. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, M.; Wang, Y.; Chen, X.; Wang, Y.T.; Gao, X.; Jung, T.P. Enhancing detection of SSVEPs for a high-speed brain speller using task-related component analysis. IEEE Trans. Biomed. Eng. 2018, 65, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yin, E.; Li, F.; Zhang, Y.; Tanaka, T.; Zhao, Q.; Cui, Y.; Xu, P.; Yao, D.; Guo, D. Two-Stage Frequency Recognition Method Based on Correlated Component Analysis for SSVEP-Based BCI. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 1314–1323. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Guo, D.; Li, F.; Yin, E.; Zhang, Y.; Li, P.; Zhao, Q.; Tanaka, T.; Yao, D.; Xu, P. Correlated component analysis for enhancing the performance of SSVEP-based brain-computer interface. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 948–956. [Google Scholar] [CrossRef]
- Tanaka, H.; Katura, T.; Sato, H. Task-related component analysis for functional neuroimaging and application to near-infrared spectroscopy data. NeuroImage 2013, 64, 308–327. [Google Scholar] [CrossRef] [PubMed]
- Suefusa, K.; Tanaka, T. Visually stimulated brain-computer interfaces compete with eye tracking interfaces when using small targets. In Proceedings of the 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Chicago, IL, USA, 26–30 August 2014; pp. 4005–4008. [Google Scholar] [CrossRef]
- Suefusa, K.; Tanaka, T. A comparison study of visually stimulated brain-computer and eye-tracking interfaces. J. Neural Eng. 2017, 14. [Google Scholar] [CrossRef]
- Bakardjian, H.; Tanaka, T.; Cichocki, A. Optimization of SSVEP brain responses with application to eight-command brain-computer interface. Neurosci. Lett. 2010, 469, 34–38. [Google Scholar] [CrossRef]
- Kimura, Y.; Tanaka, T.; Higashi, H.; Morikawa, N. SSVEP-based brain–computer interfaces using FSK-modulated visual stimuli. IEEE Trans. Biomed. Eng. 2013, 60, 2831–2838. [Google Scholar] [CrossRef] [PubMed]
- Bin, G.; Gao, X.; Wang, Y.; Hong, B.; Gao, S. VEP-based brain-computer interfaces: Time, frequency, and code modulations. IEEE Comput. Intell. Mag. 2009, 4, 22–26. [Google Scholar] [CrossRef]
- Guo, F.; Hong, B.; Gao, X.; Gao, S. A brain–computer interface using motion-onset visual evoked potential. J. Neural Eng. 2008, 5, 477–485. [Google Scholar] [CrossRef] [PubMed]
- Tanji, Y.; Nakanishi, M.; Suefusa, K.; Tanaka, T. Waveform-Based Multi-Stimulus Coding for Brain-Computer Interfaces Based on Steady-State Visual Evoked Potentials. In Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, Canada, 15–20 April 2018; pp. 821–825. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Y.; Nakanishi, M.; Gao, X.; Jung, T.P.; Gao, S. High-speed spelling with a noninvasive brain-computer interface. Proc. Natl. Acad. Sci. USA 2015, 112, E6058–E6067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norcia, A.M.; Appelbaum, L.G.; Ales, J.M.; Cottereau, B.R.; Rossion, B. The steady-state visual evoked potential in vision research: A review. J. Vis. 2015, 15, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- İşcan, Z.; Nikulin, V.V. Steady state visual evoked potential (SSVEP) based brain-computer interface (BCI) performance under different perturbations. PLoS ONE 2018, 13, e0191673. [Google Scholar] [CrossRef] [Green Version]
- Muller-Putz, G.R.; Scherer, R.; Neuper, C.; Pfurtscheller, G. Steady-state somatosensory evoked potentials: Suitable brain signals for brain-computer interfaces? IEEE Trans. Neural Syst. Rehabil. Eng. 2006, 14, 30–37. [Google Scholar] [CrossRef]
- Goodin, D.S.; Squires, K.C.; Starr, A. Long latency event-related components of the auditory evoked potential in dementia. Brain J. Neurol. 1978, 101, 635–648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higashi, H.; Rutkowski, T.M.; Washizawa, Y.; Cichocki, A.; Tanaka, T. EEG auditory steady state responses classification for the novel BCI. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Boston, MA, USA, 30 August–3 September 2011; pp. 4576–4579. [Google Scholar]
- Guillot, A.; Collet, C. The Neurophysiological Foundations of Mental and Motor Imagery; Oxford University Press: Oxford, UK, 2010. [Google Scholar]
- Pfurtscheller, G.; Brunner, C.; Schlögl, A.; Lopes da Silva, F. Mu rhythm (de) synchronization and EEG single-trial classification of different motor imagery tasks. Neuroimage 2006, 31, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Sanei, S.; Chambers, J. EEG Signal Processing; Wiley-Interscience: Chichester, UK, 2007; Chapter 1. [Google Scholar]
- Pfurtscheller, G.; Neuper, C.; Flotzinger, D.; Pregenzer, M. EEG-based discrimination between imagination of right and left hand movement. Electroencephalogr. Clin. Neurophysiol. 1997, 103, 642–651. [Google Scholar] [CrossRef]
- Pfurtscheller, G.; Lopes, F.H. Event-related EEG/MEG synchronization and desynchronization: Basic principles. Clin. Neurophysiol. 1999, 110, 1842–1857. [Google Scholar] [CrossRef]
- Dornhege, G.; Blankertz, B.; Curio, G.; Müller, K.R. Boosting bit rates in noninvasive EEG single-trial classifications by feature combination and multiclass paradigms. IEEE Trans. Biomed. Eng. 2004, 51, 993–1002. [Google Scholar] [CrossRef]
- Grosse-Wentrup, M.; Buss, M. Multiclass common spatial patterns and information theoretic feature extraction. IEEE Trans. Biomed. Eng. 2008, 55, 1991–2000. [Google Scholar] [CrossRef] [PubMed]
- Kübler, A.; Nijboer, F.; Mellinger, J.; Vaughan, T.M.; Pawelzik, H.; Schalk, G.; McFarland, D.J.; Birbaumer, N.; Wolpaw, J.R. Patients with ALS can use sensorimotor rhythms to operate a brain-computer interface. Neurology 2005, 64, 1775–1777. [Google Scholar] [CrossRef]
- Higashi, H.; Tanaka, T.; Funase, A. Classification of single trial EEG during imagined hand movement by rhythmic component extraction. In Proceedings of the 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Minneapolis, MN, USA, 3–6 September 2009; pp. 2482–2485. [Google Scholar] [CrossRef]
- Pfurtscheller, G.; Muller-Putz, G.R.; Scherer, R.; Neuper, C. Rehabilitation with brain-computer interface systems. Computer 2008, 41, 58–65. [Google Scholar] [CrossRef]
- Page, S.J.; Levine, P.; Sisto, S.A.; Johnston, M.V. Mental practice combined with physical practice for upper-limb motor deficit in subacute stroke. Phys. Therapy 2001, 81, 1455–1462. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.; Pomeroy, V.M.; Baron, J.C. Motor imagery: A backdoor to the motor system after stroke? Stroke 2006, 37, 1941–1952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Várkuti, B.; Guan, C.; Pan, Y.; Phua, K.S.; Ang, K.K.; Kuah, C.W.K.; Chua, K.; Ang, B.T.; Birbaumer, N.; Sitaram, R. Resting state changes in functional connectivity correlate with movement recovery for BCI and robot-assisted upper-extremity training after stroke. Neurorehabilit. Neural Repair 2013, 27, 53–62. [Google Scholar] [CrossRef]
- Lambercy, O.; Dovat, L.; Gassert, R.; Burdet, E.; Teo, C.L.; Milner, T. A Haptic Knob for Rehabilitation of Hand Function. IEEE Trans. Neural Syst. Rehabil. Eng. 2007, 15, 356–366. [Google Scholar] [CrossRef]
- Alegre, M.; Labarga, A.; Gurtubay, I.G.; Iriarte, J.; Malanda, A.; Artieda, J. Beta electroencephalograph changes during passive movements: Sensory afferences contribute to beta event-related desynchronization in humans. Neurosci. Lett. 2002, 331, 29–32. [Google Scholar] [CrossRef]
- Cochin, S.; Barthelemy, C.; Roux, S.; Martineau, J. Observation and execution of movement: Similarities demonstrated by quantified electroencephalography. Eur. J. Neurosci. 1999, 11, 1839–1842. [Google Scholar] [CrossRef] [PubMed]
- Friesen, C.L.; Bardouille, T.; Neyedli, H.F.; Boe, S.G. Combined action observation and motor imagery neurofeedback for modulation of brain activity. Front. Hum. Neurosci. 2017, 10, 692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagai, H.; Tanaka, T. Action Observation of Own Hand Movement Enhances Event-Related Desynchronization. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 1407–1415. [Google Scholar] [CrossRef] [PubMed]
- Müller-Gerking, J.; Pfurtscheller, G.; Flyvbjerg, H. Designing optimal spatial filters for single-trial EEG classification in a movement task. Clin. Neurophysiol. 1999, 110, 787–798. [Google Scholar] [CrossRef]
- Ramoser, H.; Muller-Gerking, J.; Pfurtscheller, G. Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans. Rehabil. Eng. 2000, 8, 441–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemm, S.; Blankertz, B.; Curio, G.; Müller, K.R. Spatio-spectral filters for improving the classification of single trial EEG. IEEE Trans. Biomed. Eng. 2005, 52, 1541–1548. [Google Scholar] [CrossRef]
- Dornhege, G.; Blankertz, B.; Krauledat, M.; Losch, F.; Curio, G.; Muller, K.R. Combined optimization of spatial and temporal filters for improving brain-computer interfacing. IEEE Trans. Biomed. Eng. 2006, 53, 2274–2281. [Google Scholar] [CrossRef] [PubMed]
- Tomioka, R.; Müller, K.R. A regularized discriminative framework for EEG analysis with application to brain–computer interface. NeuroImage 2010, 49, 415–432. [Google Scholar] [CrossRef]
- Wu, W.; Gao, X.; Hong, B.; Gao, S. Classifying single-trial EEG during motor imagery by iterative spatio-spectral patterns learning (ISSPL). IEEE Trans. Biomed. Eng. 2008, 55, 1733–1743. [Google Scholar] [CrossRef]
- Ang, K.K.; Chin, Z.Y.; Zhang, H.; Guan, C. Filter bank common spatial pattern (FBCSP) in brain-computer interface. In Proceedings of the IEEE World Congress on Computational Intelligence—IEEE International Joint Conference on Neural Networks, Hong Kong, China, 1–8 June 2008; pp. 2390–2397. [Google Scholar]
- Higashi, H.; Tanaka, T. Simultaneous design of FIR filter banks and spatial patterns for EEG signal classification. IEEE Trans. Biomed. Eng. 2013, 60, 1100–1110. [Google Scholar] [CrossRef]
- Higashi, H.; Tanaka, T. Common spatio-time-frequency patterns for motor imagery-based brain machine interfaces. Comput. Intell. Neurosci. 2013, 2013, 537218. [Google Scholar] [CrossRef] [Green Version]
- Tomida, N.; Tanaka, T.; Ono, S.; Yamagishi, M.; Higashi, H. Active Data Selection for Motor Imagery EEG Classification. IEEE Trans. Biomed. Eng. 2014, 62, 458–467. [Google Scholar] [CrossRef]
- Barachant, A.; Bonnet, S.; Congedo, M.; Jutten, C. Multiclass brain-computer interface classification by Riemannian geometry. IEEE Trans. Biomed. Eng. 2012, 59, 920–928. [Google Scholar] [CrossRef] [Green Version]
- Uehara, T.; Tanaka, T.; Fiori, S. Robust averaging of covariance matrices for motor-imagery brain-computer interfacing by Riemannian geometry. In Advances in Cognitive Neurodynamics (V): Proceedings of the Fifth International Conference on Cognitive Neurodynamics-2015); Springer: Singapore, 2016; pp. 347–353. [Google Scholar] [CrossRef]
- Barachant, A.; Bonnet, S.; Congedo, M.; Jutten, C. Classification of covariance matrices using a Riemannian-based kernel for BCI applications. Neurocomputing 2013, 112, 172–178. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.R.; Tanaka, T.; Molla, M.K.I. Multiband tangent space mapping and feature selection for classification of EEG during motor imagery. J. Neural Eng. 2018, 15. [Google Scholar] [CrossRef] [PubMed]
- Yger, F.; Berar, M.; Lotte, F. Riemannian Approaches in Brain-Computer Interfaces: A Review. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 1753–1762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiori, S.; Tanaka, T. An algorithm to compute averages on matrix Lie groups. IEEE Trans. Signal Process. 2009, 57, 4734–4743. [Google Scholar] [CrossRef]
- Fiori, S. Learning the Fréchet mean over the manifold of symmetric positive-definite matrices. Cogn. Comput. 2009, 1, 279–291. [Google Scholar] [CrossRef] [Green Version]
- Uehara, T.; Sartori, M.; Tanaka, T.; Fiori, S. Robust Averaging of Covariances for EEG Recordings Classification in Motor Imagery Brain-Computer Interfaces. Neural Comput. 2017, 29, 1631–1666. [Google Scholar] [CrossRef] [PubMed]
- Graimann, B.; Pfurtscheller, G.; Allison, B. Brain-Computer Interfaces—Revolutionizing Human-Computer Interaction; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Ladouce, S.; Donaldson, D.; Dudchenko, P.; Ietswaart, M. Understanding Minds in Real-World Environments: Toward a Mobile Cognition Approach. Front. Hum. Neurosci. 2017, 10. [Google Scholar] [CrossRef] [Green Version]
- Abiri, R.; Borhani, S.; Sellers, E.W.; Jiang, Y.; Zhao, X. A comprehensive review of EEG-based brain-computer interface paradigms. J. Neural Eng. 2019, 16. [Google Scholar] [CrossRef]
- Lazarou, I.; Nikolopoulos, S.; Petrantonakis, P.; Kompatsiaris, I.; Tsolaki, M. EEG-Based Brain–Computer Interfaces for Communication and Rehabilitation of People with Motor Impairment: A Novel Approach of the 21st Century. Front. Hum. Neurosci. 2018, 12, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shih, J.; Krusienski, D.; Wolpaw, J. Brain-computer interfaces in medicine. Mayo Clinic Proc. 2012, 87, 268–279. [Google Scholar] [CrossRef] [Green Version]
- Huang, Q.; Zhang, Z.; Yu, T.; He, S.; Li, Y. An EEG-EOG-Based Hybrid Brain-Computer Interface: Application on Controlling an Integrated Wheelchair Robotic Arm System. Front. Neurosci. 2019, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuanqing, L.; Chuanchu, W.; Haihong, Z.; Cuntai, G. An EEG-based BCI system for 2D cursor control. In Proceedings of the IEEE International Joint Conference on Neural Networks, IJCNN, and IEEE World Congress on Computational Intelligence, Hong Kong, China, 1–8 June 2008; pp. 2214–2219. [Google Scholar] [CrossRef]
- Donchin, E.; Spencer, K.M.; Wijesinghe, R. The mental prosthesis: Assessing the speed of a P300-based brain-computer interface. IEEE Trans. Rehabil. Eng. 2000, 8, 174–179. [Google Scholar] [CrossRef] [Green Version]
- Hong, B.; Guo, F.; Liu, T.; Gao, X.; Gao, S. N200-speller using motion-onset visual response. Clin. Neurophysioly 2009, 120, 1658–1666. [Google Scholar] [CrossRef] [PubMed]
- Karim, A.A.; Hinterberger, T.; Richter, J.; Mellinger, J.; Neumann, N.; Flor, H.; Kübler, A.; Birbaumer, N. Neural internet: Web surfing with brain potentials for the completely paralyzed. Neurorehabilit. Neural Repair 2006, 20, 508–515. [Google Scholar] [CrossRef]
- Bensch, M.; Karim, A.A.; Mellinger, J.; Hinterberger, T.; Tangermann, M.; Bogdan, M.; Rosenstiel, W.; Nessi Birbaumer, N. Nessi: An EEG-Controlled Web Browser for Severely Paralyzed Patients. Comput. Intell. Neurosci. 2007, 7, 508–515. [Google Scholar] [CrossRef] [Green Version]
- Marshall, D.; Coyle, D.; Wilson, S.; Callaghan, M. Games, gameplay, and BCI: The state of the art. IEEE Trans. Comput. Intell. AI Games 2013, 5, 82–99. [Google Scholar] [CrossRef]
- LaFleur, K.; Cassady, K.; Doud, A.; Shades, K.; Rogin, E.; He, B. Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain–computer interface. J. Neural Eng. 2013, 10, 046003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Royer, A.; He, B. Goal selection versus process control in a brain-computer interface based on sensorimotor rhythms. J. Neural Eng. 2009, 6, 016005. [Google Scholar] [CrossRef] [PubMed]
- Royer, A.S.; Doud, A.J.; Rose, M.L.; He, B. EEG control of a virtual helicopter in 3-dimensional space using intelligent control strategies. IEEE Trans. Neural Syst. Rehabil. Eng. 2010, 18, 581–589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doud, A.J.; Lucas, J.P.; Pisansky, M.T.; He, B. Continuous Three-Dimensional Control of a Virtual Helicopter Using a Motor Imagery Based Brain-Computer Interface. PLoS ONE 2011, 6, e26322. [Google Scholar] [CrossRef] [Green Version]
- Chae, Y.; Jeong, J.; Jo, S. Toward Brain-Actuated Humanoid Robots: Asynchronous Direct Control Using an EEG-Based BCI. IEEE Trans. Robot. 2012, 28, 1131–1144. [Google Scholar] [CrossRef]
- Alshabatat, A.; Vial, P.; Premaratne, P.; Tran, L. EEG-based brain-computer interface for automating home appliances. J. Comput. 2014, 9, 2159–2166. [Google Scholar] [CrossRef]
- Lin, C.T.; Lin, B.S.; Lin, F.C.; Chang, C.J. Brain Computer Interface-Based Smart Living Environmental Auto-Adjustment Control System in UPnP Home Networking. IEEE Syst. J. 2014, 8, 363–370. [Google Scholar] [CrossRef] [Green Version]
- Ou, C.Z.; Lin, B.S.; Chang, C.J.; Lin, C.T. Brain Computer Interface-based Smart Environmental Control System. In Proceedings of the Eighth International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP), Piraeus-Athens, Greece, 18–20 July 2012; pp. 281–284. [Google Scholar] [CrossRef]
- Edlinger, G.; Holzner, C.; Guger, C.; Groenegress, C.; Slater, M. Brain-computer interfaces for goal orientated control of a virtual smart home environment. In Proceedings of the 4th International IEEE/EMBS Conference on Neural Engineering, Antalya, Turkey, 29 April–2 May 2009; pp. 463–465. [Google Scholar] [CrossRef]
- Kanemura, A.; Morales, Y.; Kawanabe, M.; Morioka, H.; Kallakuri, N.; Ikeda, T.; Miyashita, T.; Hagita, N.; Ishii, S. A waypoint-based framework in brain-controlled smart home environments: Brain interfaces, domotics, and robotics integration. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Tokyo, Japan, 3–7 November 2013; pp. 865–870. [Google Scholar] [CrossRef]
- Bayliss, J.; Ballard, D. A virtual reality testbed for brain-computer interface research. IEEE Trans. Rehabil. Eng. 2000, 8, 188–190. [Google Scholar] [CrossRef] [Green Version]
- Bayliss, J. Use of the evoked potential P3 component for control in a virtual apartment. IEEE Trans. Neural Syst. Rehabil. Eng. 2003, 11, 113–116. [Google Scholar] [CrossRef] [PubMed]
- Ianez, E.; Azorin, J.M.; Ubeda, A.; Ferrandez, J.M.; Fernandez, E. Mental tasks-based brain–robot interface. Robot. Auton. Syst. 2010, 58, 1238–1245. [Google Scholar] [CrossRef]
- Schalk, G. Brain-computer symbiosis. J. Neural Eng. 2008, 5, P1–P15. [Google Scholar] [CrossRef] [Green Version]
- McFarland, D.J.; Sarnacki, W.A.; Wolpaw, J.R. Electroencephalographic (EEG) control of three-dimensional movement. J. Neural Eng. 2010, 7, 036007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ubeda, A.; Ianez, E.; Azorin, J.M. Shared control architecture based on RFID to control a robot arm using a spontaneous brain–machine interface. Robot. Auton. Syst. 2013, 61, 768–774. [Google Scholar] [CrossRef]
- Li, T.; Hong, J.; Zhang, J.; Guo, F. Brain-machine interface control of a manipulator using small-world neural network and shared control strategy. J. Neurosci. Methods 2014, 224, 26–38. [Google Scholar] [CrossRef] [PubMed]
- Sirvent Blasco, J.L.; Ianez, E.; Ubeda, A.; Azorin, J.M. Visual evoked potential-based brain-machine interface applications to assist disabled people. Expert Syst. Appl. 2012, 39, 7908–7918. [Google Scholar] [CrossRef]
- Hortal, E.; Planelles, D.; Costa, A.; Ianez, E.; Ubeda, A.; Azorin, J.; Fernandez, E. SVM-based Brain-Machine Interface for controlling a robot arm through four mental tasks. Neurocomputing 2015, 151, 116–121. [Google Scholar] [CrossRef]
- Bell, C.J.; Shenoy, P.; Chalodhorn, R.; Rao, R.P.N. Control of a humanoid robot by a noninvasive brain-computer interface in humans. J. Neural Eng. 2008, 5, 214–220. [Google Scholar] [CrossRef]
- Xu, B.; Peng, S.; Song, A.; Yang, R.; Pan, L. Robot-aided upper-limb rehabilitation based on motor imagery EEG. Int. J. Adv. Robot. Syst. 2011, 8, 88–97. [Google Scholar] [CrossRef]
- Leeb, R.; Perdikis, S.; Tonini, L.; Biasiucci, A.; Tavella, M.; Creatura, M.; Molina, A.; Al-Khodairy, A.; Carlson, T.; Millán, J. Transferring brain–computer interfaces beyond the laboratory: Successful application control for motor-disabled users. Artif. Intell. Med. 2013, 59, 121–132. [Google Scholar] [CrossRef] [Green Version]
- Gernot, R.; Muller-Putz, G.R.; Pfurtscheller, G. Control of an Electrical Prosthesis With an SSVEP-Based BCI. IEEE Trans. Biomed. Eng. 2008, 55, 361–364. [Google Scholar] [CrossRef]
- Perrin, X.; Chavarriaga, R.; Colas, F.; Siegwart, R.; Millán, J.d.R. Brain-coupled Interaction for Semi-autonomous Navigation of an Assistive Robot. Robot. Auton. Syst. 2010, 58, 1246–1255. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, K.; Matsunaga, K.; Wang, H. Electroencephalogram-based control of an electric wheelchair. IEEE Trans. Robot. 2005, 21, 762–766. [Google Scholar] [CrossRef]
- Rebsamen, B.; Guan, C.; Zhang, H.; Wang, C.; Teo, C.; Ang, M. A brain controlled wheelchair to navigate in familiar environments. IEEE Trans. Neural Syst. Rehabil. Eng. 2010, 18, 590–598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rebsamen, B.; Teo, C.; Zeng, Q.; Ang, M.; Burdet, E.; Guan, C.; Zhang, H.; Laugier, C. Controlling a Wheelchair Indoors Using Thought. IEEE Intell. Syst. 2007, 22, 18–24. [Google Scholar] [CrossRef]
- Iturrate, I.; Antelis, J.; Kubler, A.; Minguez, J. A noninvasive brain-actuated wheelchair based on a P300 neurophysiological protocol and automated navigation. IEEE Trans. Robot. 2009, 25, 614–627. [Google Scholar] [CrossRef] [Green Version]
- Muller, S.; Celeste, W.; Bastos-Filho, T.; Sarcinelli-Filho, M. Brain-computer interface based on visual evoked potentials to command autonomous robotic wheelchair. J. Med. Biol. Eng. 2010, 30, 407–415. [Google Scholar] [CrossRef]
- Diez, P.; Muller, S.; Mut, V.; Laciar, E.; Avila, E.; Bastos-Filho, T.; Sarcinelli-Filho, M. Commanding a robotic wheelchair with a high-frequency steady-state visual evoked potential based brain–computer interface. Med. Eng. Phys. 2013, 35, 1155–1164. [Google Scholar] [CrossRef]
- Leeb, R.; Friedman, D.; Müller-Putz, G.R.; Scherer, R.; Slater, M.; Pfurtscheller, G. Self-paced (asynchronous) BCI control of a wheelchair in virtual environments: A case study with a tetraplegic. Comput. Intell. Neurosci. 2007, 7, 7–12. [Google Scholar] [CrossRef] [Green Version]
- Tsui, C.; Gan, J.; Hu, H. A self-paced motor imagery based brain-computer interface for robotic wheelchair control. Clin. EEG Neurosci. 2011, 42, 225–229. [Google Scholar] [CrossRef]
- Galan, F.; Nuttin, M.; Lew, P.; Vanacker, G.; Philips, J. A brain-actuated wheelchair: Asynchronous and non-invasive brain-computer interfaces for continuous control of robots. Clin. Neurophysiol. 2008, 119, 2159–2169. [Google Scholar] [CrossRef] [Green Version]
- Allison, B.; Dunne, S.; Leeb, R.; Del, R.; Millán, J.; Nijholt, A. Towards Practical Brain–Computer Interfaces Bridging the Gap from Research to Real-World Applications; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Brunner, C.; Allison, B.; Krusienski, D.; Kaiser, V.; Muller-Putz, G.; Pfurtscheller, G. Improved signal processing approaches in an offline simulation of a hybrid brain-computer interface. J. Neurosci. Methods 2010, 188, 165–173. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Pan, J.; Wang, F.; Yu, Z. A hybrid BCI system combining P300 and SSVEP and its application to wheelchair control. IEEE Trans. Neural Syst. Rehabil. Eng. 2013, 60, 3156–3166. [Google Scholar] [CrossRef]
- Long, J.; Li, Y.; Wang, H.; Yu, T.; Pan, J.; Li, F. A Hybrid Brain Computer Interface to Control the Direction and Speed of a Simulated or Real Wheelchair. IEEE Trans. Neural Syst. Rehabil. Eng. 2012, 20, 720–729. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Li, J.; Ji, H.; Jiang, C. A hybrid brain computer interface system based on the neurophysiological protocol and brain-actuated switch for wheelchair control. J. Neurosci. Methods 2014, 229, 33–43. [Google Scholar] [CrossRef]
- Lotte, F.; Congedo, M.; Lécuyer, A.; Lamarche, F.; Arnaldi, B. A review of classification algorithms for EEG-based brain-computer interfaces. J. Neural Eng. 2007, 4, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Balafar, M.; Ramli, A.; Saripan, M.; Mashohor, S. Review of brain MRI image segmentation methods. Artif. Intell. Rev. 2010, 33, 261–274. [Google Scholar] [CrossRef]
- Lance, B.J.; Kerick, S.E.; Ries, A.J.; Oie, K.S.; McDowell, K. Brain-computer interface technologies in the coming decades. Proc. IEEE 2012, 100, 1585–1599. [Google Scholar] [CrossRef]
- Grosse-Wentrup, M.; Schölkopf, B.; Hill, J. Causal influence of gamma oscillations on the sensorimotor rhythm. NeuroImage 2011, 56, 837–842. [Google Scholar] [CrossRef] [PubMed]
Reference Paper | Electrodes Locations in Encephalography | Event-Related Potentials | Evoked Potentials |
---|---|---|---|
[2] | X | ||
[123] | X | ||
[124] | X | ||
[125] | X | ||
[126] | X | ||
[127] | X | ||
[128] | X | ||
[129] | X | ||
[130] | X | ||
[131] | X | ||
[132] | X | ||
[133] | X | ||
[134] | X | ||
[135] | X | ||
[136] | X | ||
[137] | X | ||
[76] | X | ||
[138] | X | ||
[139] | X | ||
[140] | X | ||
[141] | X | ||
[72] | X | ||
[142] | X | ||
[144] | X | ||
[145] | X | ||
[146] | X | ||
[147] | X | ||
[148] | X | ||
[149] | X | ||
[150] | X | ||
[124] | X | ||
[151] | X | ||
[152] | X | ||
[153] | X | ||
[154] | X | ||
[155] | X | ||
[156] | X | ||
[157] | X | ||
[158] | X | ||
[159] | X | ||
[160] | X | ||
[161] | X | ||
[162] | X | ||
[80] | X | ||
[163] | X | ||
[164] | X | ||
[165] | X | ||
[166] | X | ||
[167] | X | ||
[168] | X | ||
[169] | X | ||
[146] | X | ||
[170] | X | ||
[171] | X | ||
[172] | X | ||
[81] | X | ||
[173] | X | ||
[174] | X | ||
[148] | X | ||
[175] | X | ||
[176] | X | ||
[177] | X | ||
[178] | X | ||
[179] | X |
Reference Paper | Application to Unmanned Vehicles and Robotics | Application to Mobile Robotics and Interaction with Robotic Arms | Application to Robotic Arms, Robotic Tele-Presence and Electrical Prosthesis | Application to Wheelchair Control and Autonomous Vehicles |
---|---|---|---|---|
[115] | X | |||
[216] | X | |||
[217] | X | |||
[218] | X | |||
[219] | X | |||
[220] | X | |||
[221] | X | |||
[222] | X | |||
[223] | X | |||
[224] | X | |||
[225] | X | |||
[226] | X | |||
[227] | X | |||
[78] | X | |||
[34] | X | |||
[228] | X | |||
[229] | X | |||
[230] | X | |||
[231] | X | |||
[232] | X | |||
[132] | X | |||
[240] | X | |||
[78] | X | |||
[22] | X | |||
[77] | X | |||
[241] | X | |||
[123] | X | |||
[242] | X | |||
[240] | X | |||
[243] | X | |||
[244] | X | |||
[245] | X | |||
[246] | X | |||
[247] | X | |||
[248] | X | |||
[249] | X | |||
[1] | X | |||
[250] | X | |||
[251] | X | |||
[252] | X | |||
[253] | X | |||
[255] | X | |||
[256] | X | |||
[257] | X | |||
[258] | X | |||
[259] | X | |||
[261] | X | |||
[262] | X | |||
[263] | X | |||
[264] | X | |||
[265] | X |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonci, A.; Fiori, S.; Higashi, H.; Tanaka, T.; Verdini, F. An Introductory Tutorial on Brain–Computer Interfaces and Their Applications. Electronics 2021, 10, 560. https://doi.org/10.3390/electronics10050560
Bonci A, Fiori S, Higashi H, Tanaka T, Verdini F. An Introductory Tutorial on Brain–Computer Interfaces and Their Applications. Electronics. 2021; 10(5):560. https://doi.org/10.3390/electronics10050560
Chicago/Turabian StyleBonci, Andrea, Simone Fiori, Hiroshi Higashi, Toshihisa Tanaka, and Federica Verdini. 2021. "An Introductory Tutorial on Brain–Computer Interfaces and Their Applications" Electronics 10, no. 5: 560. https://doi.org/10.3390/electronics10050560
APA StyleBonci, A., Fiori, S., Higashi, H., Tanaka, T., & Verdini, F. (2021). An Introductory Tutorial on Brain–Computer Interfaces and Their Applications. Electronics, 10(5), 560. https://doi.org/10.3390/electronics10050560