Performance Evaluation of GFDM Channel Estimation Using DFT for Tactile Internet Application
Abstract
:1. Introduction
1.1. Contributions
- Two different pilot symbols patterns are used in which these pilot symbols are inserted at different subcarriers to evaluate the performance of each pilot symbol pattern.
- The GFDM system is operated for 5G application, where the GFDM parameters used in this work are suitable for tactile internet use-case [4].
- The channel model that we employ is 5G channel, which is introduced in [18,19] as NYUSIM channel. The channel is suitable for millimeter wave wireless communication systems. The channel model operates for wide range carrier frequency (500 MHz to 100 GHz) with bandwidths (0 to 800 MHz). The scenarios provided in the NYUSIM simulator, such as urban microcell, urban macro cell and rural macro cell, are tested in GFDM system using channel estimation with DFT.
1.2. Notations
2. GFDM Systems and Channel Model
2.1. LS and DFT-Based Channel Estimation
2.2. Tactile Internet Application for GFDM
2.3. Channel Model
3. Experimental Results
4. Conclusions
- The pilot symbol with Δk = 3 has a better performance in estimating the channel than the pilot symbol with Δk = 6. However, on the other hand, the efficiency of the information data decreases.
- DFT channel estimation improves channel estimation accuracy with a 9 dB MSE improvement for the Umi scenario, 4 dB in the Uma scenario and 3 dB in the Rma scenario for an MSE value of compared to LS estimation.
- The magnitude of the channel frequency response fluctuations is influenced by the number of tap channels and the magnitude of the gain of the power delay profile. The number of fluctuations decreases the accuracy of channel estimation. Although the number of tap channels in the Uma scenario is more than in the Umi scenario, the gain of each tap in the Umi scenario is greater, so that the estimation accuracy in the Umi scenario is decreased.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wunder, G.; Jung, P.; Kasparick, M.; Wild, T.; Schaich, F.; Chen, Y.; Brink, S.; Gaspar, I.; Michailow, N.; Festag, A.; et al. 5GNOW: Non-orthogonal, asynchronous waveforms for future mobile applications. IEEE Commun. Mag. 2014, 52, 97–105. [Google Scholar] [CrossRef]
- Fettweis, G. The Tactile Internet: Applications and Challenges. IEEE Veh. Technol. Mag. 2014, 9, 64–70. [Google Scholar] [CrossRef]
- NGMN Alliance. NGMN 5G White Paper. 17 February 2015. Available online: https://www.ngmn.org/5g-white-paper/5g-white-paper.html (accessed on 20 March 2018).
- Ferreira, J.S.; Rodrigues, H.D.; Gonzalez, A.A.; Nimr, A.; Matthe, M.; Zhang, D.; Mendes, L.L.; Fettweis, G. GFDM frame design for 5G application scenarios. J. Commun. Inf. Syst. 2017, 32. [Google Scholar] [CrossRef] [Green Version]
- Michailow, N.; Matthé, M.; Gaspar, I.S.; Caldevilla, A.N.; Mendes, L.L.; Festag, A.; Fettweis, G. Generalized Frequency Division Multiplexing for 5th Generation Cellular Networks. IEEE Trans. Commun. 2014, 62, 3045–3061. [Google Scholar] [CrossRef]
- Vakilian, V.; Wild, T.; Schaich, F.; Brink, S.; Frigon, J.-F. Universal-filtered multi-carrier technique for wireless systems beyond LTE. In Proceedings of the Globecom 2013 9th International Workshop on Broadband Wireless Access, Atlanta, GA, USA, 9–13 December 2013. [Google Scholar] [CrossRef]
- Weitkemper, P.; Bazzi, J.; Kusume, K.; Benjebbour, A.; Kishiyama, Y. On regular resource grid for filtered OFDM. IEEE Commun. Lett. 2016, 20, 2486–2489. [Google Scholar] [CrossRef]
- Michailow, N.; Mendes, L.; Matthe, M.; Gaspar, I.; Festag, A.; Fettweis, G. Robust WHT-GFDM for the Next Generation of Wireless Networks. IEEE Commun. Lett. 2015, 19, 106–109. [Google Scholar] [CrossRef]
- Mendes, L.; Michailow, N.; Matthé, M.; Gaspar, I.; Zhang, D.; Fettweis, G. Opportunities in 5G Networks A Research and Development Perspective; Chapter 13—GFDM: Providing Flexibility for the 5G Physical Layer; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar] [CrossRef]
- Vilaipornsawai, U.; Jia, M. Scattered-pilot channel estimation for GFDM. In Proceedings of the 2014 IEEE Wireless Communications and Networking Conference (WCNC), Istanbul, Turkey, 6–9 April 2014; pp. 1053–1058. [Google Scholar]
- Ehsanfar, S.; Matthe, M.; Zhang, D.; Fettweis, G. A study of Pilot-Aided Channel Estimation in MIMO-GFDM Systems. In Proceedings of the WSA 2016; 20th International ITG Workshop on Smart Antennas, Munich, Germany, 9–11 March 2016. [Google Scholar]
- Ehsanfar, S.; Matthe, M.; Zhang, D.; Fettweis, G. Theoritical Analysis and CRLB Evaluation for Pilot-aided Channel Estimation in GFDM. In Proceedings of the 2016 IEEE Global Communications Conference (GLOBECOM), Washington, DC, USA, 4–8 December 2016. [Google Scholar]
- Kang, Y.; Kim, K.; Park, H. Efficient-DFT based channel estimation for OFDM systems on multipath channels. IET Commun. 2007, 1, 197–202. [Google Scholar] [CrossRef]
- Cho, Y.S.; Kim, J.; Yang, W.Y.; Kang, C.G. Channel Estimation. In MIMO OFDM Wireless Communications with Matlab; John Wiley & Sons: Singapore, 2010; pp. 187–198. [Google Scholar]
- Shravan, B.K.; Venkata, K.M.; Drosopoulos, A. Training Based Channel Estimation for Multitaper GFDM System. Mob. Inf. Syst. 2017. [Google Scholar] [CrossRef] [Green Version]
- Kassam, J.; Miri, M.; Magueta, R.; Castanheira, D.; Pedrosa, P.; Silva, A.; Dinis, R.; Gameiro, A. Two-Step Multiuser Equalization for Hybrid mmWave Massive MIMO GFDM Systems. Electronics 2020, 9, 1220. [Google Scholar] [CrossRef]
- Permana, A.K.; Hamid, E.Y. DFT-Based Channel Estimation for GFDM on Multipath Channels. In Proceedings of the 2018 10th International Conference on Information Technology and Electrical Engineering (ICITEE), Bali, Indonesia, 24–26 July 2018; pp. 31–35. [Google Scholar]
- New York University, NYUSIM. 2016. Available online: http://wireless.engineering.nyu.edu/5gmillimeter-wave-channel-modeling-software/ (accessed on 19 January 2021).
- Sun, S.; MacCartney, G.R., Jr.; Rappaport, T.S. A novel milimeter-wave channel simulator and applications for 5G wireless communications. In Proceedings of the IEEE International Conference on Communications (ICC), Paris, France, 21–25 May 2017; pp. 1–7. [Google Scholar]
- Michailow, N.; Krone, S.; Lentmaier, M.; Fettweis, G. Bit error rate performance of generalized frequency division multiplexing. In Proceedings of the 2012 IEEE Vehicular Technology Conference (VTC Fall), Quebec City, QC, Canada, 3–6 September 2012. [Google Scholar]
Parameters | Tactile Internet |
---|---|
Cell size (km) | 1 |
Delay Spread (μs) | 1 |
Bc (kHz) | 200 |
Doppler shift (Hz) | 10 |
Tc (ms) | 50 |
Subcarrier K | 64 or 128 |
Subsymbols M | 5 |
Receiver Type | Zero Forcing |
Tcp (μ) | 2 |
Symbol duration (μs) | 5 |
Modulation order | 2 or 4 |
Bw (MHz) | 100 (fragmented) |
Channel Parameters | Antenna Parameters | ||
---|---|---|---|
Frequency | 28 GHz | Number of Tx antenna elements | 1 |
Radio Frequency(RF) Bandwidth | 800 MHz | ||
Scenario | Umi | ||
Environment | NLOS | Number of Rx antenna elements | 1 |
Lower Bound of T-R distance | 10 m | ||
Upper Bound of T-R distance | 1000 m | Tx antenna azimuth HPBW | 10° |
Tx Power | 30 dBm | ||
Barometric Pressure | 1013.25 mbar | Tx antenna elevation HPBW | 10° |
Humidity | 50% | ||
Temperature | 20 °C | Rx antenna azimuth HPBW | 10° |
Rain Rate | 0 mm/hr | ||
Polarization | Co-Pol | Rx antenna elevation HPBW | 10° |
Foliage Loss | No |
First Scheme | Second Scheme | ||
---|---|---|---|
Parameter | Value | Parameter | Value |
Modulation Order () | 2 (QPSK) | Modulation Order () | 2 (QPSK) |
Number of subsymbol (M) | 5 | Number of subsymbol (M) | 5 |
Number of subcarrier (K) | 128 | Number of subcarrier (K) | 128 |
Cyclic prefix length (Ncp) | 1/8 | Cyclic prefix length (Ncp) | 1/8 |
Pilot subcarrier spacing () | 3 and 6 | Pilot subcarrier spacing () | 3 |
Pulse shaping filter | Raised Cosine (RC) | Pulse shaping filter | Raised Cosine (RC) |
Roll-off factor (α) | 0.1 | Roll-off factor (α) | 0.1 |
GFDM Demodulator | Zero Forcing | GFDM Demodulator | Zero Forcing |
Channel taps | 4 | Channel taps | 23, 39, 2 |
Power delay profile | Exponential | Power delay profile | Umi, Uma, Rma |
Pilot symbol | Complex | Pilot symbol | Complex |
Scenario | Delay Spread (ns) | Bandwidth Coherence (MHz) | Doppler Frequency (Hz) | Time Coherence (ms) |
---|---|---|---|---|
Umi | 9.8 | 20,408 | 10 | 0.0423 |
Uma | 32.1 | 6230 | 10 | 0.0423 |
Rma | 0.2 | 1000 | 10 | 0.0423 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Permana, A.K.; Hamid, E.Y. Performance Evaluation of GFDM Channel Estimation Using DFT for Tactile Internet Application. Electronics 2021, 10, 595. https://doi.org/10.3390/electronics10050595
Permana AK, Hamid EY. Performance Evaluation of GFDM Channel Estimation Using DFT for Tactile Internet Application. Electronics. 2021; 10(5):595. https://doi.org/10.3390/electronics10050595
Chicago/Turabian StylePermana, Al Kautsar, and Effrina Yanti Hamid. 2021. "Performance Evaluation of GFDM Channel Estimation Using DFT for Tactile Internet Application" Electronics 10, no. 5: 595. https://doi.org/10.3390/electronics10050595
APA StylePermana, A. K., & Hamid, E. Y. (2021). Performance Evaluation of GFDM Channel Estimation Using DFT for Tactile Internet Application. Electronics, 10(5), 595. https://doi.org/10.3390/electronics10050595