Palliation of Four-Wave Mixing in Optical Fibers Using Improved DSP Receiver
Abstract
:1. Introduction
1.1. Related Work
1.2. Our Contributions
- (A)
- We present a new model coined as LHOCS, where the FWM are compensated and high capacity information is communicated over a 500 km distance.
- (B)
- An analytical model is presented with an improved digital signal processing (IDSP) receiver to mitigate FWM effect and support 8, 16, and 32 WDM channels.
- (C)
- We also show that transmission of 100 Gbps data rate over 32 WDM channels is achieved for 500 km length of optical fiber.
- (D)
- The duo-binary (DB) advanced modulation scheme is applied to narrow the pulse spectrum, which leads to manage FWM successfully over longer distances.
- (E)
- Through extensive simulation we demonstrate that our proposed technique work better compare to current optical communication system in terms of BER, length and capacity.
2. System Model
2.1. FWM
2.2. Improved DSP
2.3. Polarization Mode Dispersion
3. Analytical Modeling
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ali, F.; Khan, Y.; Qureshi, S.S.; Ahmad, S.; Waqas, M. Effect of fiberoptics nonlinearities in long-haul and ultra-high speed DWDM optical transmission networks at 10, 40 and 100 Gb/s ultra-high speed data rates. J. Opt. Commun. 2018. [Google Scholar] [CrossRef]
- Xu, T.; Mikroulis, S.; Mitchell, J.E.; Darwazeh, I. Bandwidth compressed waveform for 60-GHz millimeter-wave radio over fiber experiment. J. Lightw. Technol. 2015, 34, 3458–3465. [Google Scholar] [CrossRef] [Green Version]
- Ali, F.; Ahmad, S.; Muhammad, F.; Abbas, Z.H.; Habib, U.; Kim, S. Adaptive equalization for dispersion mitigation in multi-channel optical communication networks. Electronics 2019, 8, 1364. [Google Scholar] [CrossRef] [Green Version]
- Xu, T.; Shevchenko, N.A.; Lavery, D.; Semrau, D.; Liga, G.; Alvarado, A.; Killey, R.I.; Bayvel, P. Modulation format dependence of digital nonlinearity compensation performance in optical fibre communication systems. Opt. Express 2017, 25, 3311–3326. [Google Scholar] [CrossRef] [PubMed]
- Piran, M.J.; Tran, N.H.; Suh, D.Y.; Song, J.B.; Hong, C.S.; Han, Z. QoE-Driven Channel Allocation and Handoff Management for Seamless Multimedia in Cognitive 5G Cellular Networks. IEEE Trans. Veh. Technol. 2017, 66, 6569–6585. [Google Scholar] [CrossRef]
- Agrell, E.; Karlsson, M.; Chraplyvy, A.R.; Richardson, D.J.; Krummrich, P.M.; Winzer, P.; Roberts, K.; Fischer, J.K.; Savory, S.J.; Eggleton, B.J.; et al. Roadmap of optical communications. J. Opt. 2016, 18, 063002. [Google Scholar] [CrossRef]
- Cartledge, J.C.; Guiomar, F.P.; Kschischang, F.R.; Liga, G.; Yankov, M.P. Digital signal processing for fiber nonlinearities. Opt. Express 2017, 25, 1916–1936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bakhshali, A.; Chan, W.Y.; Cartledge, J.C.; Sullivan, M.O.; Laperle, C.; Borowiec, A.; Roberts, K. Frequency-domain Volterra-based equalization structures for efficient mitigation of intrachannel Kerr nonlinearities. J. Light. Technol. 2016, 34, 1770–1777. [Google Scholar] [CrossRef]
- Liu, X.; Chraplyvy, A.; Winzer, P.; Tkach, R.; Chandrasekhar, S. Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit. Nat. Photonics 2013, 7, 560. [Google Scholar] [CrossRef]
- Dong, Y.; Rawachy, E.A.; Giddings, R.P.; Jin, W.; Nesset, D.; Tang, J.M. Multiple Channel Interference Cancellation Of Digital Filter Multiple Access PONs. Int. J. Light. Technol. 2017, 35, 34–44. [Google Scholar] [CrossRef]
- Piran, M.J.; Pham, S.M.R.Q.V.; Suh, D.Y.; Han, Z. Multimedia Communication over Cognitive Radio Networks from QoS/QoE Perspective: A Comprehensive Survey. J. Netw. Comput. Appl. 2020, 172, 1–44. [Google Scholar]
- Hasegawa, T.; Yamamoto, Y.; Hirano, M. Optimal fiber design for large capacity long haul coherent transmission. Opt. Express 2017, 25, 706–712. [Google Scholar] [CrossRef]
- Asif Khan, M.K.; Ali, F.; Irfan, M.; Muhammad, F.; Althobiani, F.; Ali, A.; Khan, S.; Rahman, S.; Perun, G.; Glowacz, A. Mitigation of Phase Noise and Nonlinearities for High Capacity Radio-over-Fiber Links. Electronics 2021, 10, 345. [Google Scholar] [CrossRef]
- Kishikawa, H.; Uetai, M.; Gotoi, N. All-Optical Modulation Format Conversion Between OOK, QPSK, and 8QAM. J. Light. Technol. 2019, 37, 3925–3931. [Google Scholar] [CrossRef]
- Liga, G.; Saavedra, G.; Bayvel, P. Combining Optical Phase Conjugation and Volterra Equalisation: A Novel Nonlinearity Compensation Scheme. J. Light. Technol. 2018, 36, 377–400. [Google Scholar]
- Rademacher, G.; Luis, R.S.; Puttnam, B.J.; Maruyama, R.; Aikawa, K.; Awaji, Y.; Furukawa, H.; Petermann, K.; Wada, N. Investigation of Intermodal Nonlinear Signal Distortions in Few-Mode Fiber Transmission. J. Light. Technol. 2019, 37, 1–6. [Google Scholar] [CrossRef]
- Kong, M.; Kong, M.; Li, X.; Zhang, J.; Xin, K.W.X.; Zhao, F.; Yu, J. High spectral efficiency 400 Gb/s transmission by different modulation formats and advanced DSP. J. Light. Technol. 2019. [Google Scholar] [CrossRef]
- Al-Rawachy, E.; Giddings, R.P.; Tang, J. Experimental demonstration of a real-time digital filtermultiple access PON with low complexity DSP-based interference cancellation. J. Light. Technol. 2019, 37, 4315–4329. [Google Scholar] [CrossRef] [Green Version]
- Giacoumidis, E.; Lin, Y.; Wei, J.; Aldaya, I.; Tsokanos, A.; Barry, L.P. Harnessing machine learning for fiber-induced nonlinearity mitigation in long-haul coherent optical OFDM. Future Internet 2018, 11, 2. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Shen, S.; Zhou, Q.; Yao, S.; Zhang, R.; Omar, S. A reliable OFDM-based MMW mobile fronthaul with DSP-aided sub-band spreading and time-confined windowing. J. Light. Technol. 2019, 37, 3236–3243. [Google Scholar] [CrossRef]
- Irfan, M.; Ali, F.; Muhammad, F.; Habib, U.; Alwadie, A.S.; Glowacz, A.; Abbas, Z.H.; Kaǹtoch, E. DSP-Assisted nonlinear impairments tolerant 100 Gbps optical backhaul network for long-Haul transmission. Entropy 2020, 22, 1062. [Google Scholar] [CrossRef]
- Anjum, O.F.; Bottrill, K.; Horak, P.; Jung, Y.; Suzuki, M.; Yamamoto, Y.; Hasegawa, T.; Richardson, D.J.; Parmigiani, F.; Petropoulos, P.; et al. Channel selective wavelength conversion by means of inter modal four wave mixing. In Proceedings of the Optical Fiber Communications Conference and Exhibition, San Diego, CA, USA, 3–7 March 2019; pp. 1–3. [Google Scholar]
- Stojanovic, N.; Changsong, X. An efficient method for skew estimation and compensation in coherent receivers. IEEE Photonics Technol. Lett. 2016, 28, 489–492. [Google Scholar] [CrossRef]
- Benyahya, K.; Simonneau, C.; Ghazisaeidi, A.; Barr, N.; Jian, P.; Morizur, J.F.; Labroille, G.; Bigot, M.; Sillard, P.; Provost, J.G.; et al. Multiterabit transmission over OM2 multimode fiber with wavelength and mode group multiplexing and direct detection. J. Light. Technol. 2018, 36, 355–360. [Google Scholar] [CrossRef]
- Maharana, D.; Rout, R. A 4 channel WDM-based hybrid optical Fiber/FSO communication system using DP QPSK modulation for bit rate of 100/112 Gb/s. Int. J. Eng. Res. Technol. 2019, 8, 442–445. [Google Scholar]
- Charlet, G.; Pecci, P. Ultra-long haul submarine transmission. In Undersea Fiber Communication Systems, 2nd ed.; Academic Press: San Diego, CA, USA, 2016; pp. 165–235. [Google Scholar]
- Hui, R.; O’Sullivan, M. Optical system performance measurements. In Fiber Optic Measurement Techniques; Elsevier Academic Press: San Diego, CA, USA, 2009. [Google Scholar]
- Zhuge, Q.; Chen, X. Advances in modulation and DSP for optical transmission systems. J. Opt. Commun. 2018, 409, 1–136. [Google Scholar] [CrossRef]
- Okamoto, K. Planar lightwave circuits. In Fundamentals of Optical Waveguides, 2nd ed.; Elsevier Academic Press: San Diego, CA, USA, 2006; pp. 417–534. [Google Scholar]
- Obaid, H.M.; Shahid, H. Achieving high gain using Er-Yb codoped waveguide/fiber optical parametric hybrid amplifier for dense wavelength division multiplexed system. Opt. Eng. 2018, 57, 056108. [Google Scholar] [CrossRef]
- Niaz, A.; Qamar, F.; Islam, K.; Shahzad, A.; Shahzadi, R.; Ali, M. Performance analysis and comparison of QPSK and DP-QPSK based optical fiber communication systems. ITEE J. 2018, 7, 34–39. [Google Scholar]
- JPaza, L.; Alvaradoc, Y.J.; Lascanoa, L.; Vera, C.C. Three levels of propagation of the four-wave mixing signal. J. Results Phys. 2019, 11, 414–421. [Google Scholar]
- El-Naha, F.I. Coherent quadrature phase shift keying optical communication systems. Optoelectron. Lett. 2018, 14, 372–375. [Google Scholar] [CrossRef]
- Kahn, J.M.; Miller, D.A.B. Communications expands its space. Nat. Photonics 2017, 11, 5–8. [Google Scholar] [CrossRef]
- Perin, J.K.; Shastri, A.; Kahn, J. Design of low-power DSP-free coherent receivers for data center links. J. Light. Technol. 2017, 35, 4650–4662. [Google Scholar] [CrossRef]
- Miao, X.; Bi, M.; Fu, Y.; Li, L.; Hu, W. Experimental study of NRZ, Duobinary, and PAM-4 in O-band DML-based 100G-EPON. IEEE Photonics Technol. Lett. 2017, 29, 1490–1493. [Google Scholar] [CrossRef]
- Irfan, M.; Ali, F.; Muhammad, F.; Alwadie, A.S.; Glowacz, A.; Goldasz, I.; Mielnik, R.; Alkahtani, F.S.; Khan, H. An Optimal Framework for WDM Systems Using Analytical Characterization of Refractive Index-Related Nonlinear Impairments. Electronics 2021, 10, 221. [Google Scholar] [CrossRef]
- Khalid, R.; Zafrullah, M. Analysis of the Q-factor of the external modulation with different optical filters to overcome the fwm non-linearity in the fiber networks. In Proceedings of the International Symposium on Wireless Systems and Networks, Lahore, Pakistan, 19–22 November 2017; pp. 19–22. [Google Scholar]
- Sahin, E.; Ooi, K.J.A.; Choi, J.W.; Ng, D.K.T.; Png, C.E.; Tan, D.H. Efficient four-wave mixing using CMOS-compatible ultrasilicon-rich nitride photonic crystal waveguides. In Proceedings of the Conference on Lasers and Electro-Optics Pacific Rim, Hong Kong, China, 29 July–3 August 2018; pp. 1–2. [Google Scholar]
- Panda, A.; Mishra, D.P. Nonlinear effect of four wave mixing for wdm in radio-over-fiber systems. J. Electron. Commun. Eng. Res. 2014, 2, 1–6. [Google Scholar]
- Solanki, P.B.; Al-Rubaiai, M.; Tan, X. Extended Kalman Filter-Based Active Alignment Control for LED Optical Communication. IEEE/ASME Trans. Mechatron. 2018, 23, 1501–1511. [Google Scholar] [CrossRef]
- Muhammad, F.; Ali, F.; Habib, U.; Usman, M.; Khan, I.; Kim, S. Time domain equalization and digital back-propagation method-based receiver for fiber optic communication systems. Int. J. Opt. 2020, 2020, 3146374. [Google Scholar] [CrossRef]
- Jiangbing, D.; Li, L.; Xinyu, F.; Qingwen, L.; Zuyuan, H. Sensitivity enhancement for fiber bragg grating sensors by four wave mixing. Photonics 2015, 2, 426–443. [Google Scholar]
- Anjum, O.F.; Horak, P.; Jung, Y.; Suzuki, M.; Yamamoto, Y.; Hasegawa, T.; Petropoulos, P.; Richardson, D.J.; Parmigiani1, F. Bandwidth enhancement of inter-modal our wave mixing Bragg scattering by means of dispersion engineering. APL Photonics 2018, 4, 368–370. [Google Scholar]
- Ali, F.; Khan, Y.; Qureshi, S.S. Transmission performance comparison of 16*100 Gbps dense wavelength division multiplexed long haul optical networks at different advance modulation formats under the influence of nonlinear impairments. J. Opt. Commun. 2019. [Google Scholar] [CrossRef]
- Marvin, S.; Pratheesh, P. Analysis of SPM and FWM in optical fiber communication system using optisystem. Int. J. Eng. Res. Technol. 2014, 3, 1700–1704. [Google Scholar]
- Ali, F.; Muhammad, F.; Habib, U.; Khan, Y.; Usman, M. Modeling and minimization of FWM effects in DWDM-based long-haul optical communication systems. Photonic Netw. Commun. 2020. [Google Scholar] [CrossRef]
- Ali, F.; Khan, Y.; Ali, A.; Ahmad, G. Minimization of nonlinear impairments and its impact on transmission performances of highcapacity long-haul optical networks. J. Opt. Commun. 2018. [Google Scholar] [CrossRef]
- Rademacher, G.; Ruben, S.; Benjamin, J.; Furukawa, H.; Maruyama, R. Investigation of intermodal four-wave mixing for nonlinear signal processing in few-mode fibers. IEEE Photonics Technol. Lett. 2018, 30, 1527–1530. [Google Scholar] [CrossRef]
- Chen, Z.; Guo, X.; Fu, X.; Shu, C.; Li, Z. Investigation of four-wave mixing crosstalk in phase-sensitive fiber optical parametric amplifier. J. Light. Technol. 2018, 36, 5113–5120. [Google Scholar] [CrossRef]
- Zhang, H.; Jin, L.; Zhang, H.; Xu, Y.; Shi, L.; Wang, T.; Chen, H.; Wang, D.; Ma, X. All-fiber nonlinear optical switch based on polarization controller coiled SMF-GIMF-SMF for ultrashort pulse generation. J. Opt. Commun. 2019, 452, 7–11. [Google Scholar] [CrossRef]
Description | Magnitude |
---|---|
Line width | 10 MHz |
Initial phase | 0 deg |
Launch power | −6–6 dBm |
output power | −27 to −16 dBm |
Spacing among transmitted multichannel | 50 to 200 GHz |
Transmission path | 500 km |
Phase modulation dispersion | 0.6 ps/km |
Multichannel range | 32 |
Noise bandwidth | 640 GHz |
Nonlinear dispersion | −3 ps/km |
EDFA amplifier | Gain controller of 20 dB |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muhammad, F.; Ali, F.; Abbas, G.; Abbas, Z.H.; Haider, S.; Bilal, M.; Piran, M.J.; Suh, D.Y. Palliation of Four-Wave Mixing in Optical Fibers Using Improved DSP Receiver. Electronics 2021, 10, 611. https://doi.org/10.3390/electronics10050611
Muhammad F, Ali F, Abbas G, Abbas ZH, Haider S, Bilal M, Piran MJ, Suh DY. Palliation of Four-Wave Mixing in Optical Fibers Using Improved DSP Receiver. Electronics. 2021; 10(5):611. https://doi.org/10.3390/electronics10050611
Chicago/Turabian StyleMuhammad, Fazal, Farman Ali, Ghulam Abbas, Ziaul Haq Abbas, Shahab Haider, Muhammad Bilal, Md. Jalil Piran, and Doug Young Suh. 2021. "Palliation of Four-Wave Mixing in Optical Fibers Using Improved DSP Receiver" Electronics 10, no. 5: 611. https://doi.org/10.3390/electronics10050611
APA StyleMuhammad, F., Ali, F., Abbas, G., Abbas, Z. H., Haider, S., Bilal, M., Piran, M. J., & Suh, D. Y. (2021). Palliation of Four-Wave Mixing in Optical Fibers Using Improved DSP Receiver. Electronics, 10(5), 611. https://doi.org/10.3390/electronics10050611