Using the Variable Geometry in a Planar Inductor for an Optimised Performance
Abstract
:1. Introduction
1.1. Applications of Sending Techniques
1.2. The Scope of the Paper
2. Methodology
2.1. The Experimental Method
2.2. The Analytical Method
2.3. The Modelling Method
2.4. The Robust Design Method
3. Results and Discussion
3.1. The Experimental Results
3.2. The Modelling and Optimisation Results
3.3. The Uncertainty and Robust Design Results
4. Discussion of Results
5. Conclusions
6. Patents
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Goldfine, N.J. Magnetometers for improved materials characterization in aerospace applications. Mater. Eval. 1993, 51, 396–405. [Google Scholar]
- Anjomshoaa, A.; Duarte, F.; Rennings, D.; Matarazzo, T.J.; deSouza, P.; Ratti, C. City Scanner: Building and Scheduling a MobileSensing Platform for Smart City Services. IEEE Internet Things J. 2018, 5, 4567–4579. [Google Scholar] [CrossRef]
- Bi, Y.; Govindaraju, M.R.; Jiles, D.C. The dependence of magnetic properties on fatigue in A533B nuclear pressure vessel steels. IEEE Trans. Magn. 1997, 33, 3928–3930. [Google Scholar] [CrossRef]
- Shi, Y.; Jiles, D. Fem Analysis of the Influence of Fatigue Crack on Magnetic Properties of Steel. In Proceedings of the 1998 IEEE International Magnetics Conference (INTERMAG), San Francisco, CA, USA, 6–9 January 1998; p. 51. [Google Scholar]
- Bi, Y.; Jiles, D.C. Dependence of Magnetic Properties on Crack Size in Steels. IEEE Trans. Magn. 1998, 34, 2021–2023. [Google Scholar] [CrossRef]
- Varsier, N.; Plets, D.; Corre, Y.; Vermeeren, G.; Joseph, W.; Aerts, S.; Martens, L.; Wiart, J. A novel method to assess human population exposure induced by a wireless cellular network. Bioelectromagnetics 2015, 36, 451–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jow, U.; Ghovanloo, M. Design and Optimization of Printed Spiral Coils for Efficient Transcutaneous Inductive Power Transmission. IEEE Trans. Biomed. Circuits Syst. 2007, 1, 139–202. [Google Scholar] [CrossRef] [PubMed]
- Siris, V.A.; Tragos, E.Z.; Petroulakis, N.E. Experiences with a metropolitan multiradio wireless mesh network: Design, performance, and application. IEEE Commun. Mag. 2012, 50, 128–136. [Google Scholar] [CrossRef]
- Diez, L.; de Lope, L.R.; Agüero, R.; Corre, Y.; Stéphan, J.; Siradel, M.B.; Aerts, S.; Vermeeren, G.; Martens, L.; Joseph, W. Optimal Dosimeter Deployment into a Smart City IoT Platform for Wideband EMF Exposure Assessment. In Proceedings of the 2015 European Conference on Networks and Communications (EuCNC), Paris, France, 29 June–2 July 2015; pp. 528–532. [Google Scholar]
- Hull, B.; Bychkovsky, V.; Zhang, Y.; Chen, K.; Goraczko, M.; Miu, A.; Shih, E.; Balakrishnan, H.; Madden, S. Cartel: A Distributed Mobile Sensor Computing System. In Proceedings of the 4th International Conference on Embedded Networked Sensor Systems, Boulder, CO, USA, 31 October–3 November 2006; pp. 125–138. [Google Scholar]
- Van Le, D.; Tham, C.-K.; Zhu, Y. Quality of Information (QoI)—Aware Cooperative Sensing in Vehicular Sensor Networks. In Proceedings of the 2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), Kona, HI, USA, 13–17 March 2017; pp. 369–374. [Google Scholar]
- Primdahl, F. The fluxgate mechanism, part I: The gating curves of parallel and orthogonal fluxgates. IEEE Trans. Magn. 1970, 6, 376–383. [Google Scholar] [CrossRef]
- Campolo, C.; Iera, A.; Molinaro, A.; Paratore, S.Y.; Ruggeri, G. SMaRTCaR: An Integrated Smartphone-Based Platform to Support Traffic Management Applications. In Proceedings of the 2012 First International Workshop on Vehicular Traffic Management for Smart Cities (VTM), Dublin, Ireland, 20–20 November 2012; pp. 1–6. [Google Scholar]
- Mukhopadhyay, S.C.; Woolley, J.D.M.; Gupta, G.S. Inspecttiion off Saxophone Reeds Employing a Novell Planar Electromagnetic Sensing Technique. In Proceedings of the 2005 IEEE Instrumentation and Measurement Technology Conference Proceedings, Ottawa, ON, Canada, 16–19 May 2005; Volume 1, pp. 209–213. [Google Scholar]
- Jolani, F.; Yu, Y.; Chen, Z. A Planar Magnetically Coupled Resonant Wireless Power Transfer System Using Printed Spiral Coils. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 1648–1651. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Gooneratne, C. A Novel Planar-Type Biosensor for Noninvasive Meat Inspection. IEEE Sens. J. 2007, 7, 1340–1346. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.C.; Gooneratne, C.P.; Gupta, G.S.; Demidenko, S.N. A low-cost sensing system for quality monitoring of dairy products. IEEE Trans. Instrum. Meas. 2006, 55, 1331–1338. [Google Scholar] [CrossRef] [Green Version]
- Mukhopadhyay, S.; Yamada, S.; Iwahara, M. Inspection of electroplated materials--performance comparison with planar meander and mesh type magnetic sensor. Int. J. Appl. Electromagn. Mech. 2002, 15, 323–329. [Google Scholar] [CrossRef] [Green Version]
- Mukhopadhyay, S.C. Quality inspection of electroplated materials using planar type micro-magnetic sensors with post-processing from neural network model. IEE Proc.-Sci. Meas. Technol. 2002, 149, 165–171. [Google Scholar] [CrossRef]
- Gooneratne, C.; Mukhopadhyay, S.C.; Purchas, R.; Gupta, G.S. Interaction of Planar Electromagnetic Sensors with Pork Belly Cuts. In Proceedings of the 1st International Conference on Sensing Technology, Palmerston North, New Zealand, 21–23 November 2005. [Google Scholar]
- Mukhopadhyay, S.C. A novel planar mesh type micro-electromagnetic sensor: Part II–estimation of system properties. IEEE Sens. J. 2004, 4, 308–312. [Google Scholar] [CrossRef]
- Mamishev, A.; Sundara-Rajan, K.; Yang, F.; Du, Y.; Zahn, M. Interdigital sensors and transducers. Proc. IEEE 2004, 92, 808–845. [Google Scholar] [CrossRef] [Green Version]
- Fratticcioli, E.; Dionigi, M.; Sorrentino, R. A Planar Resonant Sensor for the Complex Permittivity Characterization of Materials. In Proceedings of the 2002 IEEE MTT-S International Microwave Symposium Digest, (Cat. No.02CH37278). Seattle, WA, USA, 2–7 June 2002; pp. 647–649. [Google Scholar]
- Toda, K.; Komatsu, Y.; Oguni, S.; Hashiguchi, S.; Sanemesa, I. Planar gas sensor combined with interdigitated array electrodes. Anal. Sci. 1999, 15, 87–89. [Google Scholar] [CrossRef] [Green Version]
- Timmer, B.H.; Sparreboom, W.; Olthuis, W.; Bergveld, P.; van den Berg, A. Planar interdigitated conductivity sensors for low electrolyte concentrations. In Proceedings Semiconductor Sensor and Actuator Technology, SeSens, Veldhoven; STW: Utrecht, The Netherlands, 2001; pp. 878–883. [Google Scholar]
- Yoon, S.; Sim, J.K.; Cho, Y.H. On-Chip Flexible Multi-Layer Sensors for Human Stress Monitoring. In Proceedings of the IEEE SENSORS 2014, Valencia, Spain, 2–5 November 2014; pp. 851–854. [Google Scholar]
- Gramacy, R.B.; Lee, H.K.H. Gaussian Processes and Limiting Linear Models. Comput. Stat. Data Anal. 2008, 53, 123–136. [Google Scholar] [CrossRef] [Green Version]
- Paciorek, C.J. Nonstationary Gaussian Processes for Regression and Spatial Modelling. Ph.D. Thesis, Carnegie Mellon University, Pittsburgh, PA, USA, 2003. [Google Scholar]
- Sakata, A.; Ashida, F.; Zako, M. Structural optimization using kriging approximation. Comput. Meth. Appl. Mech. Eng. 2003, 192, 923–939. [Google Scholar] [CrossRef]
- Chady, T.; Enokizono, M.; Sikora, R. Neural network models of eddy current multi-frequency systems for nondestructive testing. IEEE Trans. Magn. 2000, 36, 1724–1727. [Google Scholar]
- Chady, T.; Enokizono, M.; Sikora, R.; Todaka, T.; Tsuchida, Y. Natural crack recognition using inverse neural model and multi-frequency eddy current method. IEEE Trans. Magn. 2001, 37, 2797–2799. [Google Scholar] [CrossRef]
- Alexander, F.; András, S.; Andy, K. Engineering Design Via Surrogate Modelling; University Southampton: Southampton, UK, 2008; ISBN 9780470770795. [Google Scholar]
- Joseph, V.R.; Hung, Y.; Sudjianto, A. Blind kriging: A new method for developing metamodels. ASME J. Mech. Des. 2008, 130, 031102:1–031102:8. [Google Scholar] [CrossRef]
- Razavi, S.; Tolson, B.A.; Burn, D.H. Review of surrogate modeling in water resources. Water Resour. Res. 2012, 48, W07401. [Google Scholar] [CrossRef]
- Jack, P.C.K. Kriging: Methods and Applications; Tilburg University: Tilburg, The Netherlands, 2017. [Google Scholar]
Parameter | Unit | Value |
---|---|---|
Inner radius (R) | mm | 0.15 |
Width of the copper track (W) | mm | 0.1 |
Gap between the copper tracks | mm | 0.2 |
Thickness of the copper (Th) | mil | 2.5 |
Distance between two layers (D) | mm | 0.5 |
Turns in a single layer (N) | 12 |
Coil ID | Coil Geometry | Number of Turns | Thickness (mil) | The Space between the Excitation and Sensing Coils (mm) | ||
---|---|---|---|---|---|---|
Option 1 | Option 2 | Option3 | ||||
Circular | 12 | 2.5 | 0.5 | 1 | 1.5 | |
Square | 12 | 2.5 | 0.5 | 1 | 1.5 | |
Hexagonal | 12 | 2.5 | 0.5 | 1 | 1.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aldoumani, M.; Yuce, B.; Zhu, D. Using the Variable Geometry in a Planar Inductor for an Optimised Performance. Electronics 2021, 10, 721. https://doi.org/10.3390/electronics10060721
Aldoumani M, Yuce B, Zhu D. Using the Variable Geometry in a Planar Inductor for an Optimised Performance. Electronics. 2021; 10(6):721. https://doi.org/10.3390/electronics10060721
Chicago/Turabian StyleAldoumani, Maha, Baris Yuce, and Dibin Zhu. 2021. "Using the Variable Geometry in a Planar Inductor for an Optimised Performance" Electronics 10, no. 6: 721. https://doi.org/10.3390/electronics10060721
APA StyleAldoumani, M., Yuce, B., & Zhu, D. (2021). Using the Variable Geometry in a Planar Inductor for an Optimised Performance. Electronics, 10(6), 721. https://doi.org/10.3390/electronics10060721