Double Slot Antenna for Microwave Thermal Ablation to Treat Bone Tumors: Modeling and Experimental Evaluation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design of the Double Slot Antenna to Treat Bone Tissue
2.2. 2D Antenna Modeling by the Finite Element Method
2.2.1. Electromagnetic Models
2.2.2. Thermal Models
2.3. Antenna Construction
2.4. Experimental Evaluation
Microwave (MW) System, Temperature Measurements and Standing Wave Ratio (SWR)
2.5. Thermal Ablation Experiments
2.5.1. Antenna Insertion
2.5.2. Thermal Distributions
3. Results
3.1. 2D Antenna Modeling and Experimental Evaluation
3.2. Thermal Ablation Experiments
3.2.1. Antenna Insertion
3.2.2. Thermal Distributions
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- American Cancer Society Key Statistics for Bone Cancer. Available online: https://www.cancer.org/cancer/bone-cancer/about/key-statistics.html (accessed on 12 November 2020).
- American Cancer Society Treating Bone Cancer. Available online: https://www.cancer.org/cancer/bone-cancer/treating.html (accessed on 22 March 2021).
- Knavel, E.M.; Brace, C.L. Tumor Ablation: Common Modalities and General Practices. Tech. Vasc. Interv. Radiol. 2013, 16, 192–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stauffer, P.R. Evolving technology for thermal therapy of cancer. Int. J. Hyperth. 2005, 21, 731–744. [Google Scholar] [CrossRef] [PubMed]
- Habash, R.W.Y.; Bansal, R.; Krewski, D.; Alhafid, H.T. Thermal Therapy, Part 1: An Introduction to Thermal Therapy. Crit. Rev. Biomed. Eng. 2006, 34, 459–489. [Google Scholar] [CrossRef] [PubMed]
- Gebauer, B.; Tunn, P.-U. Thermal ablation in bone tumors. In Minimally Invasive Tumor Therapies; Springer: Berlin/Heidelberg, Germany, 2006; Volume 167, pp. 135–146. [Google Scholar]
- Rhim, H.; Goldberg, S.N.; Dodd, G.D.; Solbiati, L.; Lim, H.K.; Tonolini, M.; Cho, O.K. Essential Techniques for Successful Radio-frequency Thermal Ablation of Malignant Hepatic Tumors. RadioGraphics 2001, 21, S17–S35. [Google Scholar] [CrossRef] [PubMed]
- Riadh, W.Y.H.; Rajeev, B.; Daniel, K.; Hafid, T.A. Thermal therapy, Part III: Ablation techniques. Crit. Rev. Biomed. Eng. 2007, 35, 37–121. [Google Scholar]
- Brace, C. Thermal Tumor Ablation in Clinical Use. IEEE Pulse 2011, 2, 28–38. [Google Scholar] [CrossRef] [Green Version]
- Bertram, J.M.; Yang, D.; Converse, M.C.; Webster, J.G.; Mahvi, D.M. Antenna design for microwave hepatic ablation using an axisymmetric electromagnetic model. Biomed. Eng. Online 2006, 5, 15. [Google Scholar] [CrossRef] [Green Version]
- Reeves, J.W.; Birch, M.J.; Hand, J.W. Comparison of simulated and experimental results from helical antennas within a muscle-equivalent phantom. Phys. Med. Biol. 2008, 53, 3057–3070. [Google Scholar] [CrossRef]
- Ortega-Palacios, R.; Trujillo-Romero, C.J. Heat Transfer Study in Breast Tumor Phantom during Microwave Ablation: Modeling and Experimental Results for Three Different Antennas. Electronics 2020, 9, 535. [Google Scholar] [CrossRef] [Green Version]
- Ortega-Palacios, R.; Trujillo-Romero, C.J.; Rubio, M.F.J.C.; Vera, A.; Leija, L.; Reyes, J.L.; Ramírez-Estudillo, M.C.; Morales-Alvarez, F.; Vega-Lopez, M.A. Feasibility of Using a Novel 2.45 GHz Double Short Distance Slot Coaxial Antenna for Minimally Invasive Cancer Breast Microwave Ablation Therapy: Computational Model, Phantom, and In Vivo Swine Experimentation. J. Health Eng. 2018, 2018, 1–10. [Google Scholar] [CrossRef] [Green Version]
- López, G.D.G.; Rubio, M.F.J.C.; Jácquez, J.I.H.; Hernandez, A.V.; Salas, L.L.; Perezgasga, F.V.; García, F.F. Computational FEM Model, Phantom and Ex Vivo Swine Breast Validation of an Optimized Double-Slot Microcoaxial Antenna Designed for Minimally Invasive Breast Tumor Ablation: Theoretical and Experimental Comparison of Temperature, Size of Lesion, and SWR, Preliminary Data. Comput. Math. Methods Med. 2017, 2017, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Ito, K.; Yoshimura, H.; Hayashi, Y.; Saito, K. Heating characteristics of array applicator composed of two coaxial-slot antennas for microwave coagulation therapy. IEEE Trans. Microw. Theory Tech. 2000, 48, 1800–1806. [Google Scholar] [CrossRef]
- Liu, F.-Y.; Yu, X.-L.; Liang, P.; Wang, Y.; Zhou, P.; Yu, J. Comparison of percutaneous 915 MHz microwave ablation and 2450 MHz microwave ablation in large hepatocellular carcinoma. Int. J. Hyperth. 2010, 26, 448–455. [Google Scholar] [CrossRef]
- Pusceddu, C.; Sotgia, B.; Fele, R.M.; Melis, L. Treatment of Bone Metastases with Microwave Thermal Ablation. J. Vasc. Interv. Radiol. 2013, 24, 229–233. [Google Scholar] [CrossRef] [PubMed]
- Gas, P. Multi–Frequency Analysis for Interstitial Microwave Hyperthermia Using Multi–Slot Coaxial Antenna. J. Electr. Eng. 2015, 66, 26–33. [Google Scholar] [CrossRef] [Green Version]
- Piotr, G.A.S. Tissue Temperature Distributions for Different Frequencies derived from Interstitial Microwave Hyperthermia. Prz. Elektrotech. arXiv 2012, arXiv:1710.00671. [Google Scholar]
- Brace, C.L. Radiofrequency and Microwave Ablation of the Liver, Lung, Kidney, and Bone: What Are the Differences? Curr. Probl. Diagn. Radiol. 2009, 38, 135–143. [Google Scholar] [CrossRef] [Green Version]
- Kurup, A.N.; Callstrom, M.R. Ablation of Musculoskeletal Metastases: Pain Palliation, Fracture Risk Reduction, and Oligometastatic Disease. Tech. Vasc. Interv. Radiol. 2013, 16, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Albisinni, U.; Bazzocchi, A.; Bettelli, G.; Facchini, G.; Castiello, E.; Cavaciocchi, M.; Battista, G.; Rotini, R. Treatment of osteoid osteoma of the elbow by radiofrequency thermal ablation. J. Shoulder Elb. Surg. 2014, 23, e1–e7. [Google Scholar] [CrossRef]
- Fan, Q.-Y.; Ma, B.-A.; Zhou, Y.; Zhang, M.-H.; Hao, X.-B. Bone Tumors of the Extremities or Pelvis Treated by Micro-wave-Induced Hyperthermia. Clin. Orthop. Relat. Res. 2003, 406, 165–175. [Google Scholar] [CrossRef]
- Filippiadis, D.K.; Tutton, S.; Kelekis, A. Percutaneous bone lesion ablation. Radiol. Med. 2014, 119, 462–469. [Google Scholar] [CrossRef] [PubMed]
- Ringe, K.I.; Panzica, M.; Von Falck, C. Thermoablation of Bone Tumors. Fortschr. Röntgenstr. 2016, 188, 539–550. [Google Scholar] [CrossRef] [Green Version]
- Debnath, O.B.; Saito, K.; Ito, K.; Uesaka, M. Breast cancer treatment by combining microwave hyperthermia and radiation brachytherapy. In Proceedings of the 2016 International Symposium on Antennas and Propagation (ISAP), Okinawa, Japan, 24–28 October 2016; pp. 472–473. [Google Scholar]
- Leggio, L.; de Varona, O.; Dadrasnia, E. A comparison between different schemes of microwave cancer hyperthermia treatment by means of left-handed metamaterial lenses. Prog. Electromagn. Res. 2015, 150, 73–87. [Google Scholar] [CrossRef] [Green Version]
- Dupuy, D.E.; Goldberg, S.N. Image-guided Radiofrequency Tumor Ablation: Challenges and Opportunities—Part II. J. Vasc. Interv. Radiol. 2001, 12, 1135–1148. [Google Scholar] [CrossRef]
- Carrafiello, G.; Laganà, D.; Mangini, M.; Fontana, F.; Dionigi, G.; Boni, L.; Rovera, F.; Cuffari, S.; Fugazzola, C. Microwave tumors ablation: Principles, clinical applications and review of preliminary experiences. Int. J. Surg. 2008, 6, S65–S69. [Google Scholar] [CrossRef] [Green Version]
- Trujillo-Romero, C.; Rico-Martinez, G.; Leija-Salas, L.; Vera-Hernandez, A.; Gutierrez-Martinez, J. Microwave ablation to treat bone tumors by using a double slot antenna: A modelling study. Pan Am. Health Care Exch. PAHCE 2017, 66–69. [Google Scholar] [CrossRef]
- Lujan, F.; Pinilla, B.; Gutierrez-Martinez, J.; Vera-Hernandez, A.; Leija, L.; Trujillo-Romero, C.J. Theoretical model of MW antennas to treat bone tumors: One slot and one slot choked antennas. In Proceedings of the 2017 14th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), Mexico City, Mexico, 20–22 October 2017; pp. 1–6. [Google Scholar]
- Ramirez-Guzman, T.; Trujillo-Romero, C.; Vera-Hernandez, A.; Leija, L. Micro-coaxial monopole antenna to treat bone cancer: Design and preliminary experimentation. In Proceedings of the 2019 Global Medical Engineering Physics Exchanges/Pan American Health Care Exchanges (GME-PE/PAHCE), Buenos Aires, Argentina, 26–31 March 2019; pp. 1–6. [Google Scholar]
- Martinez-Valdez, R.; Trujillo-Romero, C.; Castellanos, L.; Gutierrez-Martinez, J.; Vera-Hernandez, A.; Ramos, A.; Leija, L. Feasibility of the microwave and ultrasound ablation as alternatives to treat bone tumors. Pan Am. Health Care Exch. PAHCE 2017, 1–6. [Google Scholar] [CrossRef]
- Trujillo, C.J.; Rico, G.; Leija, L.; Vera, A.; Gutiérrez, J.; Ieee, M. Micro-Coaxial Slot Antenna to Treat Bone Tumors by Thermal Ablation: Theoretical and Experimental Evaluation. IEEE Lat. Am. Trans. 2018, 16, 2731–2737. [Google Scholar] [CrossRef]
- Karampatzakis, A.; Kühn, S.; Tsanidis, G.; Neufeld, E.; Samaras, T.; Kuster, N. Heating characteristics of antenna arrays used in microwave ablation: A theoretical parametric study. Comput. Biol. Med. 2013, 43, 1321–1327. [Google Scholar] [CrossRef] [PubMed]
- Alnassan, H.; Kastler, A.; Wang, X.; Kastler, B. Targeted radiation dipole antenna using 3D numerical simulation in microwave ablation. In Proceedings of the International Conference on Biomedical Electronics and Devices, Lisbon, Portugal, 12–15 January 2015. [Google Scholar]
- Capek, L.; Henys, P.; Barsa, P.; Dvorak, V. Performance of radiofrequency ablation used for metastatic spinal tumor: Numerical approach. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2017, 231, 814–820. [Google Scholar] [CrossRef]
- Denzi, A.; Strigari, L.; Di Filippo, F.; Botti, C.; Di Filippo, S.; Perracchio, L.; Ronchetti, M.; Cadossi, R.; Liberti, M. Modeling the positioning of single needle electrodes for the treatment of breast cancer in a clinical case. Biomed. Eng. Online 2015, 14, S1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, Z.; Zhang, B.; Moser, M.; Zhang, E.; Zhang, W. Design of a Novel Electrode of Radiofrequency Ablation for Large Tumors: A Finite Element Study. J. Eng. Sci. Med. Diagn. Ther. 2017, 1, 011001. [Google Scholar] [CrossRef] [Green Version]
- Scott, S.J.; Prakash, P.; Salgaonkar, V.; Jones, P.D.; Cam, R.N.; Han, M.; Rieke, V.; Burdette, E.C.; Diederich, C.J. Approaches for modelling interstitial ultrasound ablation of tumours within or adjacent to bone: Theoretical and experimental evaluations. Int. J. Hyperth. 2013, 29, 629–642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, Z.; Dong, T.; Cheng, Y.; Hu, J.; Nan, Q. A Treatment Planning of Radio Frequency Ablation for Spinal Tumor. Int. J. Comput. Methods 2019, 16, 1842005. [Google Scholar] [CrossRef]
- Keangin, P.; Rattanadecho, P.; Wessapan, T. An analysis of heat transfer in liver tissue during microwave ablation using single and double slot antenna. Int. Commun. Heat Mass Transf. 2011, 38, 757–766. [Google Scholar] [CrossRef]
- Hasgall, P.; Neufeld, E.; Gosselin, M.; Klingenbock, A.; Kuster, N. IT’IS Database for Thermal and Electromagnetic Parameters of Biological Tissues. Available online: http://www.itis.ethz.ch/itis-for-health/tissue-properties/overview/ (accessed on 22 March 2021).
- Brace, C.L. Dual-slot antennas for microwave tissue heating: Parametric design analysis and experimental validation. Med. Phys. 2011, 38, 4232–4240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, J.-M.; Lou, Z.; Li, Y.-J.; Riley, N.W.; Riley, D.J. Finite Element Analysis of Complex Antennas and Arrays. IEEE Trans. Antennas Propag. 2008, 56, 2222–2240. [Google Scholar] [CrossRef]
- Sysoev, S.; Kislitsy, A. Modeling of Microwave Heating and Oil Filtration in Stratum. Numer. Simul. Appl. Ex. Theory 2011. [Google Scholar] [CrossRef] [Green Version]
- Ibitoye, A.Z.; Adeneye, S.O.; Akpochafor, M.O.; Nwoye, E.O.; Aweda, M.A. Finite Element Analysis of Single Slot Antenna for Microwave Tumor Ablation. IOSR J. Appl. Phys. 2014, 5, 55–62. [Google Scholar] [CrossRef]
- Gas, P. SAR optimization for multi-dipole antenna array with regard to local hyperthermia. Prz. Elektrotech. 2019, 1, 19–22. [Google Scholar] [CrossRef] [Green Version]
- Gas, P. Optimization of multi-slot coaxial antennas for microwave thermotherapy based on the S 11 parameter analysis. Biocybern. Biomed. Eng. 2017, 37, 78–93. [Google Scholar] [CrossRef]
- Gabriel, S.; Lau, R.W.; Gabriel, C. The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys. Med. Biol. 1996, 41, 2251–2269. [Google Scholar] [CrossRef] [Green Version]
- Pennes, H.H. Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm. J. Appl. Physiol. 1998, 85, 5–34. [Google Scholar] [CrossRef] [PubMed]
- Ernesto, J.; Aguayo, L. Proposed Treatment for Breast Cancer Ablation with Core-Shell Nanoparticles Excited by 2.45 GHz Specifically Optimized Microcoaxial Antennas; Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV): Mexico City, Mexico, 2016. [Google Scholar]
- Huang, Y.; Boyle, K. Antennas: From Theory to Practice; Wiley: Hoboken, NJ, USA, 2008; ISBN 9780470510285. [Google Scholar]
- Gabriel, C.; Gabriel, S.; Corthout, E. The dielectric properties of biological tissues: I. Literature survey. Phys. Med. Biol. 1996, 41, 2231–2249. [Google Scholar] [CrossRef] [Green Version]
- Moser, T.; Buy, X.; Goyault, G.; Tok, C.; Irani, F.; Gangi, A. Ablation des tumeurs osseuses sous contrôle de l’imagerie: Revue des techniques actuelles. J. Radiol. 2008, 89, 461–471. [Google Scholar] [CrossRef]
- Niu, X.; Muheremu, A. Microwave Ablation for Bone Tumors. Orthop. Muscular Syst. 2014, 3, 1–4. [Google Scholar] [CrossRef] [Green Version]
Property | Value |
---|---|
Electrical conductivity of bone | 0.805 S/m |
Thermal conductivity of bone | 0.31 W/m·K |
Density of bone | 1908 kg/m³ |
Blood density | 1060 kg/m3 |
Heat capacity of blood | 3700 J/kg·K |
Heat capacity of bone | 1313 J/kg·K |
εr of dielectric | 2.03 |
εr of catheter | 2.60 |
εr of bone | 18.548 |
Double Slot (5 cm of Antenna Insertion) | ||||||
---|---|---|---|---|---|---|
Tmax_30 s (°C) | Tmax_600 s (°C) | |||||
Slot 1 | Between the Slots | Slot 2 | Slot 1 | Between the Slots | Slot 2 | |
Meas | 55.0 | 56.0 | 46.5 | 84.2 | 89.3 | 100.7 |
Sim | 49.6 | 61.2 | 71.3 | 127.0 | 138.7 | 152.6 |
Antenna Insertion | ||
---|---|---|
Sensor Location | 3.5 cm | 5 cm |
Slot one | 91.38 ± 2.17 | 99.67 ± 3.55 |
Slot two | 102.07 ± 2.52 | 102.66 ± 2.77 |
Between the slots | 87.05 ± 2.77 | 98.76 ± 3.21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trujillo-Romero, C.J.; Leija-Salas, L.; Vera-Hernández, A.; Rico-Martínez, G.; Gutiérrez-Martínez, J. Double Slot Antenna for Microwave Thermal Ablation to Treat Bone Tumors: Modeling and Experimental Evaluation. Electronics 2021, 10, 761. https://doi.org/10.3390/electronics10070761
Trujillo-Romero CJ, Leija-Salas L, Vera-Hernández A, Rico-Martínez G, Gutiérrez-Martínez J. Double Slot Antenna for Microwave Thermal Ablation to Treat Bone Tumors: Modeling and Experimental Evaluation. Electronics. 2021; 10(7):761. https://doi.org/10.3390/electronics10070761
Chicago/Turabian StyleTrujillo-Romero, Citlalli Jessica, Lorenzo Leija-Salas, Arturo Vera-Hernández, Genaro Rico-Martínez, and Josefina Gutiérrez-Martínez. 2021. "Double Slot Antenna for Microwave Thermal Ablation to Treat Bone Tumors: Modeling and Experimental Evaluation" Electronics 10, no. 7: 761. https://doi.org/10.3390/electronics10070761
APA StyleTrujillo-Romero, C. J., Leija-Salas, L., Vera-Hernández, A., Rico-Martínez, G., & Gutiérrez-Martínez, J. (2021). Double Slot Antenna for Microwave Thermal Ablation to Treat Bone Tumors: Modeling and Experimental Evaluation. Electronics, 10(7), 761. https://doi.org/10.3390/electronics10070761