Opto-Electronic Oscillators for Micro- and Millimeter Wave Signal Generation
Abstract
:1. Introduction
2. Current Progress of the Common Topologies of the OEO
2.1. Progress of the OEO toward Lower SMSR and Phase Noise
2.2. Progress of the OEO toward Better Long-Term Stability
2.3. General Overview
3. Recent Development of the OEO’s Application
3.1. Wideband Tunable Frequency Generation
3.2. Photonic Integrated Chip
3.3. Optical Signal Distribution for the 5G Radio Access Network
3.4. Application for SMSR, FSR and Phase Noise Measurements
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Batagelj, B.; Bogataj, L.; Vidmar, M.; Bostjan, B. Key properties and design issues for an opto-electronic oscillator. In Proceedings of the 2015 17th International Conference on Transparent Optical Networks (ICTON), Budapest, Hungary, 5–9 July 2015; Institute of Electrical and Electronics Engineers (IEEE): New York, NY, USA, 2015; pp. 1–4. [Google Scholar]
- Liu, A.; Dai, J.; Xu, K. Stable and Low-Spurs Optoelectronic Oscillators: A Review. Appl. Sci. 2018, 8, 2623. [Google Scholar] [CrossRef] [Green Version]
- Yao, X.; Maleki, L. Opto-electronic oscillator and its applications. In International Topical Meeting on Microwave Photonics; MWP 2000 (Cat. No.00EX430); Institute of Electrical and Electronics Engineers (IEEE): New York, NY, USA, 2002; pp. 265–268. [Google Scholar]
- Tang, J.; Zhu, B.; Zhang, W.; Li, M.; Pan, S.; Yao, J. Hybrid Fourier-domain mode-locked laser for ultra-wideband linearly chirped microwave waveform generation. Nat. Commun. 2020, 11, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zhou, K.; Feng, M.; Li, Z.; Zhou, Y.; Sun, Q.; Liu, J.; Zhang, L.; Li, D.; Sun, X.; et al. Room-temperature continuous-wave electrically pumped InGaN/GaN quantum well blue laser diode directly grown on Si. Light. Sci. Appl. 2018, 7, 13. [Google Scholar] [CrossRef] [PubMed]
- Corcoran, B.; Tan, M.; Xu, X.; Boes, A.; Wu, J.; Nguyen, T.G.; Chu, S.T.; Little, B.E.; Morandotti, R.; Mitchell, A.; et al. Ultra-dense optical data transmission over standard fibre with a single chip source. Nat. Commun. 2020, 11, 1–7. [Google Scholar] [CrossRef]
- Wang, B.; Morgan, J.S.; Sun, K.; Jahanbozorgi, M.; Yang, Z.; Woodson, M.; Estrella, S.; Beling, A.; Yi, X. Towards high-power, high-coherence, integrated photonic mmWave platform with microcavity solitons. Light. Sci. Appl. 2021, 10, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhu, N.; Li, W.; Liu, J. A Frequency-Doubling Optoelectronic Oscillator Based on a Dual-Parallel Mach–Zehnder Modulator and a Chirped Fiber Bragg Grating. IEEE Photon. Technol. Lett. 2011, 23, 1688–1690. [Google Scholar] [CrossRef]
- Liu, M.; Yin, X.; Ulin-Avila, E.; Geng, B.; Zentgraf, T.; Ju, L.; Wang, F.; Zhang, X. A graphene-based broadband optical modulator. Nat. Cell Biol. 2011, 474, 64–67. [Google Scholar] [CrossRef]
- Eliyahu, D.; Seidel, D.; Maleki, L. Phase noise of a high performance OEO and an ultra low noise floor cross-correlation microwave photonic homodyne system. In Proceedings of the 2008 IEEE International Frequency Control Symposium, Honolulu, HI, USA, 18–21 May 2008; IEEE: New York, NY, USA, 2008; pp. 811–814. [Google Scholar]
- Levy, E.; Horowitz, M.; Okusaga, O.; Menyuk, C.; Carter, G.; Zhou, W. Study of dual-loop optoelectronic oscillators. In Proceedings of the 2009 IEEE International Frequency Control Symposium Joint with the 22nd European Frequency and Time forum, Besancon, France, 20–24 April 2009; IEEE: New York, NY, USA, 2009; pp. 505–507. [Google Scholar]
- Banky, T.; Horvath, B.; Berceli, T. Optimum configuration of multiloop optoelectronic oscillators. J. Optical Soc. of Am. B. 2006, 23, 1371–1380. [Google Scholar] [CrossRef]
- Shumakher, E.; Eisenstein, G. A Novel Multiloop Optoelectronic Oscillator. IEEE Photon. Technol. Lett. 2008, 20, 1881–1883. [Google Scholar] [CrossRef]
- Wang, W.; Liu, Y.; Du, X.; Yan, Y.; Yu, C.; Chen, X. A Novel Demodulation Method of Fiber Bragg Grating Sensor Array Based on Wavelength-to-time Mapping and Multiloop Optoelectronic Oscillator. In Optical Fiber Communication Conference (OFC) 2020; The Optical Society: Washington, DC, USA, 2020. [Google Scholar]
- Zhu, D.; Du, T.; Pan, S. A Coupled Optoelectronic Oscillator with Performance Improved by Enhanced Spatial Hole Burning in an Erbium-Doped Fiber. J. Lightw. Technol. 2018, 36, 3726–3732. [Google Scholar] [CrossRef]
- Yao, X.; Davis, L.; Maleki, L. Coupled optoelectronic oscillators for generating both RF signal and optical pulses. J. Lightw. Technol. 2000, 18, 73–78. [Google Scholar] [CrossRef]
- Khayatzadeh, R.; Auroux, V.; Bailly, G.; Fernandez, A.; Llopis, O. Phase noise study based on transfer function in coupled optoelectronic oscillators. In Proceedings of the 2017 International Topical Meeting on Microwave Photonics (MWP), Beijing, China, 23–26 October 2017; Institute of Electrical and Electronics Engineers (IEEE): New York, NY, USA, 2017; pp. 1–4. [Google Scholar]
- Lelievre, O.; Crozatier, V.; Baili, G.; Nouchi, P.; Dolfi, D.; Morvan, L.; Goldfarb, F.; Bretenaker, F.; Llopis, O. Low phase noise 10 GHz coupled optoelectronic oscillator. In Proceedings of the 2017 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium (EFTF/IFCS), Besancon, France, 9–13 July 2017; Institute of Electrical and Electronics Engineers (IEEE): New York, NY, USA, 2017; pp. 493–494. [Google Scholar]
- Peng, H.; Du, H.; Guo, R.; Xu, Y.; Zhang, C.; Chen, J.; Chen, Z. Highly Stable and Low Phase Noise 10 GHz RF Signal Generation Based on a Sub-Harmonic Injection Locked Optoelectronic Oscillator. In Proceedings of the 2018 IEEE International Frequency Control Symposium (IFCS), Olympic Valley, CA, USA, 21–24 May 2018; Institute of Electrical and Electronics Engineers (IEEE): New York, NY, USA, 2018; pp. 1–3. [Google Scholar]
- Lee, K.; Kim, J.; Choi, W. Injection-Locked Hybrid Optoelectronic Oscillators for Single-Mode Oscillation. IEEE Photon. Technol. Lett. 2008, 20, 1645–1647. [Google Scholar] [CrossRef] [Green Version]
- Hudek, K.; Hati, A.; Howe, D.; Nelson, C.; Zhou, W. Further Examination of the Injection-Locked Dual Optoelectronic Oscillator. In Proceedings of the 2007 IEEE International Frequency Control Symposium Joint with the 21st European Frequency and Time Forum, Geneva, Switzerland, 29 May–1 June 2007; Institute of Electrical and Electronics Engineers (IEEE): New York, NY, USA, 2007; pp. 796–800. [Google Scholar]
- Lee, K.-H.; Kim, J.-Y.; Choi, W.-Y.; Kamitsuna, H.; Ida, M.; Kurishima, K. Low-Cost Optoelectronic Self-Injection-Locked Oscillators. IEEE Photon. Technol. Lett. 2008, 20, 1151–1153. [Google Scholar] [CrossRef] [Green Version]
- Bogataj, L.; Vidmar, M.; Batagelj, B. Opto-Electronic Oscillator with Quality Multiplier. IEEE Trans. Microw. Theory Tech. 2016, 64, 1–6. [Google Scholar] [CrossRef]
- Bogataj, L.; Vidmar, M.; Batagelj, B. A Feedback Control Loop for Frequency Stabilization in an Opto-Electronic Oscillator. J. Lightw. Technol. 2014, 32, 3690–3694. [Google Scholar] [CrossRef]
- Bagnell, M.; Delfyett, P.J. Optoelectronic oscillator using an ultra-high finesse Fabry-Perot etalon as a photonic filter for low phase noise at high oscillating frequencies. 2013 IEEE Int. Top. Meet. Microw. Photonics 2013, 56–59. [Google Scholar] [CrossRef]
- Ozdur, I.; Mandridis, D.; Hoghooghi, N.; Delfyett, P.J. Low Noise Optically Tunable Opto-Electronic Oscillator with Fabry–Perot Etalon. J. Lightw. Technol. 2010, 28, 3100–3106. [Google Scholar] [CrossRef]
- Ozdur, I.; Mandridis, D.; Hoghooghi, N.; Delfyett, P.J. Tunable opto-electronic oscillator with an intracavity Fabry-Perot etalon. In Proceedings of the 2010 23rd Annual Meeting of the IEEE Photonics Society, Denver, CO, USA, 20–11 November 2010; IEEE: New York, NY, USA, 2010. [Google Scholar] [CrossRef]
- Zhou, W.; Okusaga, O.; Nelson, C.; Howe, D.; Carter, G.M. 10 GHz dual loop opto-electronic oscillator without RF-amplifiers. Integr. Optoelectron. Devices 2008 2008, 6897, 68970Z. [Google Scholar] [CrossRef]
- Huang, N.; Li, M.; Deng, Y.; Zhu, N.H. Optical Pulse Generation Based on an Optoelectronic Oscillator with Cascaded Nonlinear Semiconductor Optical Amplifiers. IEEE Photon. J. 2014, 6, 1–8. [Google Scholar] [CrossRef]
- Nelson, C.; Hati, A.; Howe, D.; Zhou, W. Microwave Optoelectronic Oscillator with Optical Gain. In Proceedings of the 2007 IEEE International Frequency Control Symposium Joint with the 21st European Frequency and Time Forum, Geneva, Switzerland, 29 May–1 June 2007; Institute of Electrical and Electronics Engineers (IEEE): New York, NY, USA, 2007; pp. 1014–1019. [Google Scholar]
- Nguimdo, R.M.; Saleh, K.P.; Coillet, A.; Lin, G.; Martinenghi, R.; Chembo, Y.K. Phase Noise Performance of Optoelectronic Oscillators Based on Whispering-Gallery Mode Resonators. IEEE J. Quantum Electron. 2015, 51, 1–8. [Google Scholar] [CrossRef]
- Volyanskiy, K.; Salzenstein, P.; Tavernier, H.; Pogurmirskiy, M.; Chembo, Y.K.; Larger, L. Compact optoelectronic microwave oscillators using ultra-high Q whispering gallery mode disk-resonators and phase modulation. Opt. Express 2010, 18, 22358–22363. [Google Scholar] [CrossRef]
- Savchenkov, A.A.; Ilchenko, V.S.; Byrd, J.; Liang, W.; Eliyahu, D.; Matsko, A.B.; Seidel, D.; Maleki, L. Whispering-gallery mode based opto-electronic oscillators. In Proceedings of the 2010 IEEE International Frequency Control Symposium, Newport Beach, CA, USA, 1–4 June 2010; IEEE: New York, NY, USA, 2010; pp. 554–557. [Google Scholar] [CrossRef]
- Merrer, P.-H.; Saleh, K.; Llopis, O.; Berneschi, S.; Cosi, F.; Conti, G.N. Characterization technique of optical whispering gallery mode resonators in the microwave frequency domain for optoelectronic oscillators. Appl. Opt. 2012, 51, 4742–4748. [Google Scholar] [CrossRef]
- Saleh, K.; Bouchier, A.; Merrer, P.H.; Llopis, O.; Cibiel, G. Fiber ring resonator based opto-electronic oscillator: Phase noise optimisation and thermal stability study. SPIE-Intl. Soc. Optical. Eng. 2011, 7936, 79360A. [Google Scholar]
- Chen, J.; Zheng, Y.; Xue, C.; Zhang, C.; Chen, Y. Filtering effect of SiO2 optical waveguide ring resonator applied to optoelectronic oscillator. Opt. Express 2018, 26, 12638–12647. [Google Scholar] [CrossRef]
- Zhou, P.; Pan, S.; Zhu, D.; Guo, R.; Zhang, F.; Zhao, Y. A Compact Optoelectronic Oscillator Based on an Electroabsorption Modulated Laser. IEEE Photon. Technol. Lett. 2013, 26, 86–88. [Google Scholar] [CrossRef]
- Tang, J.; Hao, T.; Li, W.; Zhu, N.; Li, M.; Domenech, D.; Banos, R.; Munoz, P.; Capmany, J. An integrated optoelectronic oscillator. In Proceedings of the 2017 International Topical Meeting on Microwave Photonics (MWP), Beijing, China, 23–26 October 2017; IEEE: New York, NY, USA, 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Hao, T.; Liu, Y.; Tang, J.; Cen, Q.; Li, W.; Zhu, N.; Dai, Y.; Capmany, J.; Yao, J.; Li, M. Recent advances in optoelectronic oscillators. Adv. Photon. 2020, 2, 044001. [Google Scholar] [CrossRef]
- Banerjee, A.; De Britto, L.A.D.; Pacheco, G.M. A Theoretical and Experimental Study of Injection-Locking and Injection-Pulling for Optoelectronic Oscillators Under Radio Frequency Signal Injection. J. Lightw. Technol. 2019, 38, 1210–1220. [Google Scholar] [CrossRef]
- Banerjee, A.; De Britto, L.A.D.; Pacheco, G.M. Analysis of Injection Locking and Pulling in Single-Loop Optoelectronic Oscillator. In IEEE Transactions on Microwave Theory and Techniques; IEEE: New York, NY, USA, 2019; Volume 67, pp. 2087–2094. [Google Scholar] [CrossRef]
- Banerjee, A.; Sarkar, J.; De Britto, L.A.D.; Pacheco, G.M.; Das, N.R. On the Transient Behavior of Single-Loop Optoelectronic Oscillators Under RF Injection-Locking. IEEE J. Quantum Electron. 2020, 56, 1–13. [Google Scholar] [CrossRef]
- Banerjee, A.; De Britto, L.A.D.; Pacheco, G.M. Study of injection-locking and injection-pulling in injection-locked optoelectronic oscillator under radio frequency signal injection. Opt. Eng. 2019, 58, 58. [Google Scholar] [CrossRef]
- Banerjee, A.; De Britto, L.A.D.; Pacheco, G.M. Analysis of phase noise in self-injection-locked optoelectronic oscillator. Optik 2020, 223, 165475. [Google Scholar] [CrossRef]
- Hasanuzzaman, G.K.M.; Iezekiel, S.; Kanno, A. W-Band Optoelectronic Oscillator. IEEE Photon. Technol. Lett. 2020, 32, 771–774. [Google Scholar] [CrossRef]
- Hao, T.; Cen, Q.; Guan, S.; Li, W.; Dai, Y.; Zhu, N.; Li, M. Optoelectronic parametric oscillator. Lightw. Sci. Appl. 2020, 9, 9. [Google Scholar] [CrossRef]
- Hasanuzzaman, G.; Shams, H.; Renaud, C.C.; Mitchell, J.; Iezekiel, S. Photonic THz Generation using Optoelectronic Oscillator-driven Optical Frequency Comb Generator. In Proceedings of the 2018 International Topical Meeting on Microwave Photonics (MWP), Toulouse, France, 22–25 October 2018; Institute of Electrical and Electronics Engineers (IEEE): New York, NY, USA, 2018; pp. 1–4. [Google Scholar]
- Hasanuzzaman, G.K.M.; Shams, H.; Renaud, C.C.; Mitchell, J.; Seeds, A.J.; Iezekiel, S. Tunable THz Signal Generation and Radio-Over-Fiber Link Based on an Optoelectronic Oscillator-Driven Optical Frequency Comb. J. Lightw. Technol. 2020, 38, 5240–5247. [Google Scholar] [CrossRef]
- Hasanuzzaman, G.K.M.; Shams, H.; Renaud, C.C.; Mitchell, J.; Seeds, A.J.; Iezekiel, S. Cascaded Microwave Photonic Filters for Side Mode Suppression in a Tunable Optoelectronic Oscillator applied to THz Signal Generation & Transmission. IEEE Photon. J. 2021, 13, 1–11. [Google Scholar] [CrossRef]
- Ilgaz, M.A.; Batagelj, B. Opto-electronic oscillator in the mm-W range for 5G wireless and mobile networks: Design challenges and possible solutions. In Proceedings of the 2017 International Conference on Optical Network Design and Modeling (ONDM), Budapest, Hungary, 15–18 May 2017; IEEE: New York, NY, USA, 2017. [Google Scholar]
- Ilgaz, M.A.; Batagelj, B. Application of an Opto-Electronic Oscillator in 5G Mobile and Wireless Networks with a Low Frequency Drift, a High Side-Modes-Suppression Ratio and without a Power Penalty due to Chromatic Dispersion. In Proceedings of the 2018 European Conference on Networks and Communications (EuCNC), Ljubljana, Slovenia, 18–21 June 2018; Institute of Electrical and Electronics Engineers (IEEE): New York, NY, USA, 2018; pp. 388–392. [Google Scholar]
- Ilgaz, M.A.; Batagelj, B. Using Tunable Dispersion-Compensated Modules to Overcome the Power Penalty of a Millimeter-Wave Opto-Electronic Oscillator Signal that is Distributed via a Passive Optical Network for 5G Networks. In Proceedings of the 2018 11th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP), Budapest, Hungary, 18–20 July 2018; IEEE: New York, NY, USA, 2018; pp. 1–6. [Google Scholar] [CrossRef] [Green Version]
- Ilgaz, M.A.; Batagelj, B. Measurement of the Free Spectral Range and the Side-Modes Suppression Ratio of a 9.3-GHz Single-Loop Opto-Electronic Oscillator by Fiber Path Selector. In Proceedings of the 2018 26th Telecommunications Forum (TELFOR), Belgrade, Serbia, 20–21 November 2018; Institute of Electrical and Electronics Engineers (IEEE): New York, NY, USA, 2018; pp. 1–4. [Google Scholar]
- Okusaga, O.; Pritchett, J.; Sorenson, R.; Zhou, W.; Berman, M.; Cahill, J.; Carter, G.M.; Menyuk, C.R. The OEO as an acoustic sensor. In Proceedings of the 2013 Joint European Frequency and Time Forum & International Frequency Control Symposium (EFTF/IFC), Prague, Czech Republic, 21–25 July 2013; Institute of Electrical and Electronics Engineers (IEEE): New York, NY, USA, 2013; pp. 66–68. [Google Scholar]
- Shao, Y.; Han, X.; Ye, Q.; Zhu, B.; Dai, Y.; Wang, C.; Zhao, M. Low-Power RF Signal Detection Using a High-Gain Tunable OEO Based on Equivalent Phase Modulation. J. Lightw. Technol. 2019, 37, 5370–5379. [Google Scholar] [CrossRef]
- Zhang, L.; Poddar, A.K.; Rohde, U.L.; Daryoush, A S. Self-injection locked phase-locked loop OEO. In IEEE MTT-S International Microwave and RF Conference; IEEE: New York, NY, USA, 2013; pp. 1–4. [Google Scholar]
- Peng, H.; Liu, N.; Li, Y.; Xie, X.; Chen, Z. Low Phase Noise and Highly Stable Optoelectronic Oscillator by Using Frequency-Multiplying Phase Locked Loop. In Proceedings of the 2020 Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF), Keystone, CO, USA, 19–23 July 2020; Institute of Electrical and Electronics Engineers (IEEE): New York, NY, USA, 2020; pp. 1–2. [Google Scholar]
- Zhang, L.; Poddar, A.K.; Rohde, U.L.; Daryoush, A.S. Comparison of Optical Self-Phase Locked Loop Techniques for Frequency Stabilization of Oscillators. IEEE Photon. J. 2014, 6, 1–15. [Google Scholar] [CrossRef]
- Zhang, J.; Yao, J. Parity-time–symmetric optoelectronic oscillator. Sci. Adv. 2018, 4, eaar6782. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Hao, T.; Li, W.; Capmany, J.; Zhu, N.; Li, M. Observation of parity-time symmetry in microwave photonics. Light. Sci. Appl. 2018, 7, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Do, P.T.; Alonso-Ramos, C.; Le Roux, X.; Le Doux, I.; Journet, B.; Cassan, E. Wideband tunable microwave signal generation in a silicon-micro-ring-based optoelectronic oscillator. Sci. Rep. 2020, 10, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Zhang, F.; Pan, S. Generation of Linear Frequency-Modulated Waveforms by a Frequency-Sweeping Optoelectronic Oscillator. J. Lightw. Technol. 2018, 36, 3927–3934. [Google Scholar] [CrossRef]
- Hao, T.; Tang, J.; Domenech, D.; Li, W.; Zhu, N.H.; Capmany, J.; Li, M. Toward Monolithic Integration of OEOs: From Systems to Chips. J. Lightw. Technol. 2018, 36, 4565–4582. [Google Scholar] [CrossRef]
- Huang, L.; Deng, L.; Fu, S.; Tang, M.; Cheng, M.; Zhang, M.; Liu, D. Stable and Compact Dual-Loop Optoelectronic Oscillator Using Self-Polarization-Stabilization Technique and Multicore Fiber. J. Lightw. Technol. 2018, 36, 5196–5202. [Google Scholar] [CrossRef]
- Li, M.; Li, L.; Zhang, J.; Yao, J. Dual-Loop and Parity-Time-Symmetric Optoelectronic Oscillator with Strong Sidemode Suppression. In Proceedings of the 2020 International Topical Meeting on Microwave Photonics (MWP), Matsue, Japan, 24–26 November 2020; IEEE: New York, NY, USA, 2020. [Google Scholar]
- Zhou, W.; Blasche, G. Injection-locked dual opto-electronic oscillator with ultra-low phase noise and ultra-low spurious level. IEEE Trans. Microw. Theory Tech. 2005, 53, 929–933. [Google Scholar] [CrossRef]
- Xu, W.; Yang, C.; Wang, Z.; Zhao, W. Tunable Low-Spurious Heterodyne-Dual-Injection-Locked Optoelectronic Oscillator. In Proceedings of the 2019 International Topical Meeting on Microwave Photonics (MWP), Ottawa, ON, Canada, 7–10 October 2019; Institute of Electrical and Electronics Engineers (IEEE): New York, NY, USA, 2019; pp. 1–3. [Google Scholar]
- Peng, H.; Guo, R.; Du, H.; Xu, Y.; Zhang, C.; Chen, J.; Chen, Z. Low Phase Noise 20 GHz Microwave Frequency Divider Based on a Super-Harmonic Injection Locked Optoelectronic Oscillator. In Proceedings of the 2018 IEEE International Frequency Control Symposium (IFCS), Olympic Valley, CA, USA, 21–24 May 2018; Institute of Electrical and Electronics Engineers (IEEE): New York, NY, USA, 2018; pp. 1–3. [Google Scholar]
- Shi, M.; Yi, L.; Hu, W. High-Resolution Brillouin Optoelectronic Oscillator Using High-Order Sideband Injection-Locking. IEEE Photon. Technol. Lett. 2019, 31, 513–516. [Google Scholar] [CrossRef]
- Yao, X.S.; Maleki, L. Dual microwave and optical oscillator. Opt. Lett. 1997, 22, 1867–1869. [Google Scholar] [CrossRef] [PubMed]
- Ly, A.; Auroux, V.; Khayatzadeh, R.; Gutierrez, N.; Fernandez, A.; Llopis, O. Highly Spectrally Pure 90-GHz Signal Synthesis Using a Coupled Optoelectronic Oscillator. IEEE Photon. Technol. Lett. 2018, 30, 1313–1316. [Google Scholar] [CrossRef]
- Zhu, D.; Wei, Z.; Du, T.; Pan, S. A coupled optoelectronic oscillator based on enhanced spatial hole burning effect. In Proceedings of the 2016 IEEE International Topical Meeting on Microwave Photonics (MWP), Long Beach, CA, USA, 31 October–3 November 2016. [Google Scholar]
- Liu, A.; Liu, J.; Dai, J.; Dai, Y.; Yin, F.; Li, J.; Zhou, Y.; Zhang, T.; Xu, K. Spurious Suppression in Millimeter-Wave OEO With a High- Q Optoelectronic Filter. IEEE Photon. Technol. Lett. 2017, 29, 1671–1674. [Google Scholar] [CrossRef]
- Yang, Y.-D.; Liao, M.-L.; Han, J.-Y.; Weng, H.-Z.; Xiao, J.-L.; Huang, Y.-Z. Narrow-Linewidth Microwave Generation by Optoelectronic Oscillators with AlGaInAs/InP Microcavity Lasers. J. Lightw. Technol. 2018, 36, 4379–4385. [Google Scholar] [CrossRef]
- Eliyahu, D.; Sariri, K.; Kamran, A.; Tokhmakhian, M. Improving short and long term frequency stability of the opto-electronic oscillator. In Proceedings of the 2002 IEEE International Frequency Control Symposium and PDA Exhibition, Cat. No.02CH37234. New Orleans, LA, USA, 29–31 May 2002; Institute of Electrical and Electronics Engineers (IEEE): New York, NY, USA, 2003; pp. 580–583. [Google Scholar]
- Bogataj, L.; Vidmar, M.; Batagelj, B. Improving the Side-mode Suppression Ratio and Reducing the Frequency Drift in an Opto-Electronic Oscillator With a Feedback Control Loop and Additional Phase Modulation. J. Lightw. Technol. 2015, 34, 885–890. [Google Scholar] [CrossRef]
- Bogataj, L.; Tratnik, J.; Batagelj, B.; Dragonja, U. A highly stable OEO using a multi-purpose optical-delay stabilization system. In Proceedings of the 2017 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium (EFTF/IFCS), Besancon, France, 9–13 July 2017; Institute of Electrical and Electronics Engineers (IEEE): New York, NY, USA, 2017; pp. 486–488. [Google Scholar]
- Zhang, Y.; Hou, D.; Zhao, J. Long-Term Frequency Stabilization of an Optoelectronic Oscillator Using Phase-Locked Loop. J. Lightw. Technol. 2014, 32, 2408–2414. [Google Scholar] [CrossRef]
- Tseng, W.-H.; Feng, K.-M. Enhancing long-term stability of the optoelectronic oscillator with a probe-injected fiber delay monitoring mechanism. Opt. Express 2012, 20, 1597–1607. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Yao, J. An Optically Tunable Optoelectronic Oscillator. J. Lightw. Technol. 2010, 28, 2640–2645. [Google Scholar] [CrossRef] [Green Version]
- Wo, J.; Wang, A.; Zhang, J.; Zhang, D.; Wang, Y.; Du, P.; Cong, W.; Yu, L. Wideband tunable microwave generation using a dispersion compensated optoelectronic oscillator. In Proceedings of the 2017 Opto-Electronics and Communications Conference (OECC) and Photonics Global Conference (PGC), Singapore, 31 July–4 August 2017; Institute of Electrical and Electronics Engineers (IEEE): New York, NY, USA, 2017; pp. 1–2. [Google Scholar]
- Liu, S.; Lv, K.; Fu, J.; Wu, L.; Pan, W.; Pana, S. Wideband Microwave Frequency Division Based on an Optoelectronic Oscillator. IEEE Photon. Technol. Lett. 2019, 31, 389–392. [Google Scholar] [CrossRef]
- Yu, Y.; Tang, H.; Xiao, X.; Yu, Y.; Zhang, X. Ultra-High-Q Silicon Microring Resonator Based Optoelectronic Oscillator with Stabilized Frequency. In Proceedings of the 2019 International Topical Meeting on Microwave Photonics (MWP), Ottawa, ON, Canada, 7–10 October 2019; Institute of Electrical and Electronics Engineers (IEEE): New York, NY, USA, 2019; pp. 1–3. [Google Scholar]
- Tang, J.; Hao, T.; Li, W.; Domenech, D.; Baños, R.; Muñoz, P.; Zhu, N.; Capmany, J.; Li, M. Integrated optoelectronic oscillator. Opt. Express 2018, 26, 12257–12265. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Yao, J. Silicon Photonic Integrated Optoelectronic Oscillator for Frequency-Tunable Microwave Generation. J. Lightw. Technol. 2018, 36, 4655–4663. [Google Scholar] [CrossRef]
- Xuan, Z.; Du, L.; Aflatouni, F. Frequency locking of semiconductor lasers to RF oscillators using hybrid-integrated opto-electronic oscillators with dispersive delay lines. Opt. Express 2019, 27, 10729–10737. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Sun, F.; Wang, Y.; Qi, Y.; Lee, J.; Kim, Y.; Oh, J.; Ji, H.; Yeo, J.; Choi, S.; et al. New Radio (NR) and its Evolution toward 5G-Advanced. IEEE Wirel. Commun. 2019, 26, 2–7. [Google Scholar] [CrossRef]
- Patzold, M. It’s time to go big with 5G [mobile radio]. IEEE Veh. Technol. Mag. 2018, 13, 4–10. [Google Scholar] [CrossRef]
- Marozsak, T.; Berceli, T.; Jaro, G.; Zolomy, A.; Hilt, A.; Mihály, S.; Udvary, É.; Varga, Z. A new optical distribution approach for millimeter wave radio. In International Topical Meeting on Microwave Photonics. Technical Digest (including High Speed Photonics Components Workshop); Cat. No.98EX181; Institute of Electrical and Electronics Engineers (IEEE): New York, NY, USA, 2002; pp. 63–66. [Google Scholar]
- Qasim, A.; Mehmood, T.; Ali, U.; Khan, Q.U.; Ghafoor, S. Dual-ring radio over fiber system with centralized light sources and local oscillator for millimeter-wave transmission. In Proceedings of the 2017 International Multi-topic Conference (INMIC), Lahore, Pakistan, 24–26 November 2017; Institute of Electrical and Electronics Engineers (IEEE): New York, NY, USA, 2017; pp. 1–5. [Google Scholar]
- Ye, C.; Zhang, L.; Zhu, M.; Yu, J.; He, S.; Chang, G.-K. A Bidirectional 60-GHz Wireless-Over-Fiber Transport System with Centralized Local Oscillator Service Delivered to Mobile Terminals and Base Stations. IEEE Photon. Technol. Lett. 2012, 24, 1984–1987. [Google Scholar] [CrossRef]
- Shan, C.; Galayko, D.; Anceau, F.; Zianbetov, E. A reconfigurable distributed architecture for clock generation in large many-core SoC. In Proceedings of the 2014 9th International Symposium on Reconfigurable and Communication-Centric Systems-on-Chip (ReCoSoC), Montpellier, France, 26–28 May 2014; Institute of Electrical and Electronics Engineers (IEEE): New York, NY, USA, 2014; pp. 1–8. [Google Scholar]
- Ilgaz, M.A.; Baliz, K.V.; Batagelj, B. A Flexible Approach to Combating Chromatic Dispersion in a Centralized 5G Network. Opto. Electron. Rev. 2020, 28, 35–42. [Google Scholar] [CrossRef]
- Khan, M.A.; Ali, F.; Irfan, M.; Muhammad, F.; Althobiani, F.; Ali, A.; Khan, S.; Rahman, S.; Perun, G.; Glowacz, A. Mitigation of Phase Noise and Nonlinearities for High Capacity Radio-over-Fiber Links. Electronics 2021, 10, 345. [Google Scholar] [CrossRef]
- Paredes-Páliz, D.F.; Royo, G.; Aznar, F.; Aldea, C.; Celma, S. Radio over Fiber: An Alternative Broadband Network Technology for IoT. Electronics 2020, 9, 1785. [Google Scholar] [CrossRef]
- Rahman, S.; Ali, F.; Smagor, A.; Muhammad, F.; Habib, U.; Glowacz, A.; Ahmad, S.; Irfan, M.; Smalcerz, A.; Kula, A.; et al. Mitigation of Nonlinear Distortions for a 100 Gb/s Radio-Over-Fiber-Based WDM Network. Electronics 2020, 9, 1796. [Google Scholar] [CrossRef]
- Ogawa, K.; Tomiyama, K.; Tan, Y.T.; Doan, M.T.; Bin, Y.M.; Kwong, D.-L.; Yamada, S.; Cole, J.B.; Katayama, Y.; Mizuta, H.; et al. Broadband variable chromatic dispersion in photonic-band electro-optic waveguide. In Proceedings of the 2006 Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference, Anaheim, CA, USA, 5–10 March 2006; Institute of Electrical and Electronics Engineers (IEEE): New York, NY, USA, 2006; p. 3. [Google Scholar]
- Hosseini, S.E.; Banai, A. Analytical Prediction of the Main Oscillation Power and Spurious Levels in Optoelectronic Oscillators. J. Lightw. Technol. 2013, 32, 978–985. [Google Scholar] [CrossRef]
- Yao, X.S.; Maleki, L. Optoelectronic microwave oscillator. J. Opt. Soc. Am. B 1996, 13, 1725–1735. [Google Scholar] [CrossRef]
- Ilgaz, M.A.; Lavric, A.; Odedeyi, T.; Darwazeh, I.; Batagelj, B. Adjustable testing setup for a single-loop optoelectronic oscillator with an electrical bandpass filter. Turk. J. Electr. Eng. Comput. Sci. 2020, 28, 1293–1302. [Google Scholar] [CrossRef]
Configuration | Optical Delay Line Length | Central Frequency | SMSR | Phase Noise (@10 kHz offset from the carrier) |
---|---|---|---|---|
Dual-loop OEO [64] | 7-core fiber (105 m) | From 3.5 GHz to 17.1 GHz | 61 dB | −100 dBc/Hz |
Injection-locked OEO [68] | Single-mode fibers (1 km and 0.7 km) | 10 GHz | N/A | −130 dBc/Hz |
Coupled OEO [72] | Erbium-doped fiber (4 m) | 10 GHz | 72.5 dB | −123.6 dBc/Hz |
OEO with high-quality opto-electronic filter [73] | Dispersion-shifted fiber (3 km) | 29.99 GHz | 83 dB | −113 dBc/Hz |
Cascading microwave photonic filter [49] | Single-mode fibers (2 km and 0.2 km) | 17.33 GHz | 125 dB | −103 dBc/Hz |
Narrowband microwave laser with dual-loop OEO [74] | Single-mode fibers (2.5 km and 3 km) | From 1.85 GHz to 10.24 GHz | 55 dB | −116 dBc/Hz |
Configuration | Optical Delay Line Length | Central Frequency | Long-term Stability | Phase Noise (@10 kHz offset from the carrier) |
---|---|---|---|---|
Temperature stabilization [75] | N/A | 10 GHz | 0.1 ppm/K | −143 dBc/Hz |
OEO with feedback-control loop [76] | 15 km | 3 GHz | 0.05 ppm/K | < −130 dBc/Hz |
Optical delay stabilization system [77] | 3 km | 3 GHz | 0.02 ppm/K | −123 dBc/Hz |
OEO with PLL [78] | 500 m (Dispersion deduced fiber) | 3 GHz | 6.98 × 10−14 (average time of 1000 s) | < −100 dBc/Hz |
Fiber Length (km) | FSR (kHz) | SMSR (dB) | Phase Noise @1 kHz Offset (dBc/Hz) | Phase Noise @10 kHz Offset (dBc/Hz) |
---|---|---|---|---|
1.25 | 158.5 | 78.1 | −73.8 | −120.7 |
2.50 | 79.3 | 71.1 | −80.6 | −123.3 |
5.00 | 40.2 | 62.5 | −100.9 | −123.3 |
7.50 | 27.2 | 39.9 | −104.7 | −125.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ilgaz, M.A.; Batagelj, B. Opto-Electronic Oscillators for Micro- and Millimeter Wave Signal Generation. Electronics 2021, 10, 857. https://doi.org/10.3390/electronics10070857
Ilgaz MA, Batagelj B. Opto-Electronic Oscillators for Micro- and Millimeter Wave Signal Generation. Electronics. 2021; 10(7):857. https://doi.org/10.3390/electronics10070857
Chicago/Turabian StyleIlgaz, Mehmet Alp, and Bostjan Batagelj. 2021. "Opto-Electronic Oscillators for Micro- and Millimeter Wave Signal Generation" Electronics 10, no. 7: 857. https://doi.org/10.3390/electronics10070857
APA StyleIlgaz, M. A., & Batagelj, B. (2021). Opto-Electronic Oscillators for Micro- and Millimeter Wave Signal Generation. Electronics, 10(7), 857. https://doi.org/10.3390/electronics10070857