Conformal Array Geometry for Hemispherical Coverage
Abstract
:1. Introduction
2. The Radiation Operator
3. The Maximum Directivity Function
4. Application to Conformal Arrays
- the mean value of computed on the dB curve only over the interval and indicated by ;
- the variance of the curve in dB with respect to in the interval ;
- the range, , in the angular sector to cover;
- the maximum coverage angle , individualizing the angular interval where .
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Weber, M.E.; Cho, J.Y.N.; Herd, J.S.; Flavin, J.M.; Benner, W.E.; Torok, G.S. The next-generation multimission U.S. surveillance radar network. Bull. Am. Meteorol. Soc. 2007, 88, 1739–1751. [Google Scholar] [CrossRef] [Green Version]
- Zrnic, D.S.; Kimpel, J.F.; Forsyth, D.E.; Shapiro, A.; Crain, G.; Ferek, R.; Heimmer, J.; Benner, W.; Mcnellis, F.T.J.; Vogt, R.J. Agile-beam phased array radar for weather observations. Bull. Am. Meteorol. Soc. 2007, 88, 1753–1766. [Google Scholar] [CrossRef]
- Zhang, G.; Doviak, R.J.; Zrnic, D.S.; Crain, J.; Staiman, D.; Al-Rashid, Y. Phased array radar polarimetry for weather sensing: A theoretical formulation for bias corrections. IEEE Trans. Geosci. Remote Sens. 2009, 47, 3679–3689. [Google Scholar] [CrossRef]
- Fulton, C.; Yeary, M.; Thompson, D.; Lake, J.; Mitchell, A. Digital phased arrays: Challenges and opportunities. Proc. IEEE 2016, 104, 487–503. [Google Scholar] [CrossRef]
- Herd, J.S.; Conway, M.D. The evolution to modern phased array architectures. Proc. IEEE 2016, 104, 519–529. [Google Scholar] [CrossRef]
- Cheng, X.; Aubry, A.; Ciuonzo, D.; De Maio, A.; Wang, X. Robust waveform and filter bank design of polarimetric radar. IEEE Trans. Aerosp. Electron. Syst. 2017, 53, 370–384. [Google Scholar] [CrossRef]
- Hamberger, G.F.; Späth, S.; Siart, U.; Eibert, T.F. A Mixed Circular/Linear Dual-Polarized Phased Array Concept for Automotive Radar—Planar Antenna Designs and System Evaluation at 78 GHz. IEEE Trans. Antennas Propag. 2019, 67, 1562–1572. [Google Scholar] [CrossRef]
- Haupt, R. Optimizing an Antenna Array for Satellite Communications. In Proceedings of the Symposium Series on Computational Intelligence, Cape Town, South Africa, 7–10 December 2015; pp. 1170–1173. [Google Scholar]
- ABM Research and Development at Bell Laboratories: Project History. Bell Laboratories (1975). Available online: http://www.srmsc.org/ref1020.html (accessed on 1 September 2000).
- Anandan, V.K.; Pradeep, K.C.; Satyanarayana, S.N.V.; Sarkar, M. Multiple satellite telemetry and tracking system (MuST). In Proceedings of the IEEE Indian Conference on Antennas and Propagation, Hyderabad, India, 16–19 December 2018; pp. 1–4. [Google Scholar]
- Jamnejad, V.; Huang, J.; Levitt, B.; Pham, T.; Cesarone, R. Array antennas for JPL/NASA deep space network. In Proceedings of the IEEE Aerospace Conference, Big Sky, MT, USA, 9–16 March 2002; Volume 2, pp. 911–921. [Google Scholar]
- Malyuskin, O.; Fusco, V. Pointing accuracy and gain reduction mechanisms in CP retrodirective arrays for SATCOM applications. In Proceedings of the European Conference on Antennas and Propagation, Prague, Czech Republic, 26–30 March 2012; pp. 825–826. [Google Scholar]
- Sulyman, A.I.; Nassar, A.T.; Samimi, M.K.; Maccartney, G.R.; Rappaport, T.S.; Al-sanie, A. Radio propagation path loss models for 5G cellular networks in the 28 GHz and 38 GHz millimeter-wave bands. IEEE Commun. Mag. 2014, 52, 78–86. [Google Scholar] [CrossRef]
- Rupakula, B.; Zihir, S.; Rebeiz, G.M. Low complexity 54 63-GHz transmit/receive 64-and 128-element 2-D-scanning phased-arrays on multilayer organic substrates with 64-QAM 30-Gbps data rates. IEEE Trans. Microw. Theory Technol. 2019, 67, 5268–5281. [Google Scholar] [CrossRef]
- Bang, J.; Choi, J. A SAR reduced mm-wave beam-steerable array antenna with dual-mode operation for fully metal-covered 5G cellular handsets. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 1118–1122. [Google Scholar] [CrossRef]
- Josefsson, L.; Persson, P. Conformal Array Antenna Theory and Design; John Wiley & Sons: Hoboken, NJ, USA, 2006; Volume 29. [Google Scholar]
- Knittel, G. Choosing the number of faces of a phased-array antenna for hemisphere scan coverage. IEEE Trans. Antennas Propag. 1965, 13, 878–882. [Google Scholar] [CrossRef]
- Kmetzo, J. An analytical approach to the coverage of a hemisphere by N planar phased arrays. IEEE Trans. Antennas Propag. 1967, 15, 367–371. [Google Scholar] [CrossRef]
- Khalifa, I.; Vaughan, R. Geometric design of pyramidal antenna arrays for hemispherical scan coverage. IEEE Trans. Antennas Propag. 2007, 55, 468–471. [Google Scholar] [CrossRef]
- Khalifa, I.; Vaughan, R. Geometric design and comparison of multifaceted antenna arrays for hemispherical coverage. IEEE Trans. Antennas Propag. 2009, 57, 2608–2614. [Google Scholar] [CrossRef]
- Bertero, M. Linear inverse and ill-posed problems. Adv. Electron. Electron. Phys. 1989, 75, 1–120. [Google Scholar]
- Solimene, R.; Maisto, M.A.; Pierri, R. Role of diversity on the singular values of linear scattering operators: The case of strip objects. J. Opt. Soc. Am. A 2013, 30, 2266–2272. [Google Scholar] [CrossRef] [PubMed]
- Goodman, J.W. Introduction to Fourier Optics; Roberts and Company Publishers: Englewood, CO, USA, 2005. [Google Scholar]
- Solimene, R.; Maisto, M.A.; Romeo, G.; Pierri, R. On the singular spectrum of the radiation operator for multiple and extended observation domains. Int. J. Antennas Propag. 2013, 2013. [Google Scholar] [CrossRef] [Green Version]
- Solimene, R.; Mola, C.; Gennarelli, G.; Soldovieri, F. On the singular spectrum of radiation operators in the non-reactive zone: The case of strip sources. J. Opt. 2015, 17, 025605. [Google Scholar] [CrossRef]
- Dell’Aversano, A.; Leone, G.; Ciaramaglia, F.; Solimene, R. A Strategy for Reconstructing Simple Shapes From Undersampled Backscattered Data. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1757–1761. [Google Scholar] [CrossRef]
- Brancaccio, A.; Dell’Aversano, A.; Leone, G.; Solimene, R. Subsurface detection of shallow targets by undersampled multifrequency data and a non-cooperative source. Appl. Sci. 2019, 9, 5383. [Google Scholar] [CrossRef] [Green Version]
- Maisto, M.A.; Solimene, R.; Pierri, R. Valid angle criterion and radiation pattern estimation via singular value decomposition for planar scanning. IET Microw. Antennas Propag. 2019, 13, 2342–2348. [Google Scholar] [CrossRef]
- Akbari Sekehravani, E.; Leone, G.; Pierri, R. NDF of Scattered Fields for Strip Geometries. Electronics 2021, 10, 202. [Google Scholar] [CrossRef]
- Leone, G.; Munno, F.; Pierri, R. Radiation properties of conformal antennas: The elliptical source. Electronics 2019, 8, 531. [Google Scholar] [CrossRef] [Green Version]
- Moretta, R.; Pierri, R. Performance of Phase Retrieval via Phaselift and Quadratic Inversion in Circular Scanning Case. IEEE Trans. Antennas Propag. 2019, 67, 7528–7537. [Google Scholar] [CrossRef]
- Brancaccio, A.; Solimene, R. Fault detection in dielectric grid scatterers. Opt. Express 2015, 23, 8200–8215. [Google Scholar] [CrossRef]
- Slepian, D.; Pollak, H.O. Prolate spheroidal wave functions, Fourier analysis and uncertainty—I. Bell Syst. Tech. J. 1961, 40, 43–63. [Google Scholar] [CrossRef]
- Solimene, R.; Maisto, M.A.; Pierri, R. Sampling approach for singular system computation of a radiation operator. J. Opt. Soc. Am. A 2019, 36, 353–361. [Google Scholar] [CrossRef]
- Leone, G. Source geometry optimization for hemispherical radiation pattern coverage. IEEE Trans. Antennas Propag. 2016, 64, 2033–2038. [Google Scholar] [CrossRef]
- Leone, G.; Munno, F.; Pierri, R. Synthesis of Angle Arrays by the NDF of the Radiation Integral. IEEE Trans. Antennas Propag. 2021, 69, 2092–2102. [Google Scholar] [CrossRef]
- Leone, G.; Munno, F.; Solimene, R. Field Synthesis of High Directivity Beams for Conformal Sources. IEEE Open J. Antennas Propag. 2021, 2, 439–452. [Google Scholar] [CrossRef]
- Toraldo di Francia, G. Degrees of freedom of an image. J. Opt. Soc. Am. A 1969, 59, 799–804. [Google Scholar] [CrossRef]
- Piestun, R.; Miller, D.A.B. Electromagnetic degrees of freedom of an optical system. J. Opt. Soc. Am. A 2000, 17, 892–902. [Google Scholar] [CrossRef]
- Newsam, G.; Barakat, R. Essential dimension as a welldefined number of degrees of freedom of finite-convolution operators appearing in optics. J. Opt. Soc. Am. A 1985, 2, 2040–2045. [Google Scholar] [CrossRef]
- Leone, G.; Munno, F.; Pierri, R. Inverse source on conformal conic geometries. IEEE Trans. Antennas Propag. 2021, 69, 1596–1609. [Google Scholar] [CrossRef]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; National Bureau of Standards: Washington, DC, USA, 1972. [Google Scholar]
Array Shape | Coverage Angle [rad] | |||
---|---|---|---|---|
Semi-circumference | 18.16 | 0.67 | 2.79 | 1.59 |
Trapezoidal | 18.24 | 0.83 | 3.30 | 1.54 |
Trapezoidal (sides 1–2 or 2–3 active) | 18.04 | 0.60 | 2.68 | 1.54 |
Angle | 17.97 | 0.05 | 0.91 | 1.93 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Munno, F. Conformal Array Geometry for Hemispherical Coverage. Electronics 2021, 10, 903. https://doi.org/10.3390/electronics10080903
Munno F. Conformal Array Geometry for Hemispherical Coverage. Electronics. 2021; 10(8):903. https://doi.org/10.3390/electronics10080903
Chicago/Turabian StyleMunno, Fortuna. 2021. "Conformal Array Geometry for Hemispherical Coverage" Electronics 10, no. 8: 903. https://doi.org/10.3390/electronics10080903
APA StyleMunno, F. (2021). Conformal Array Geometry for Hemispherical Coverage. Electronics, 10(8), 903. https://doi.org/10.3390/electronics10080903