Output Voltage Imbalance Compensation Using dc Offset Voltage for Split dc-Link Capacitor 3-Leg Inverter
Abstract
:1. Introduction
2. Analysis of 3-Leg Inverter Using Millman’s Theory
2.1. Balanced 3-Phase System
2.2. Unbalanced 3-Phase System
2.3. Offset Voltage in 3-Leg Inverter
2.4. Concept of the Proposed Imbalance Voltage Compensation
2.5. Analysis of 3-Phase 4-Wire Inverter
3. Computer-Aided Simulation and Experiment Results
3.1. Simulation Results
3.1.1. Comparison of THD in 3-Phase 4-Wire Inverters
3.1.2. Proposed Imbalance Compensation for Split dc-Link Capacitor 3-Leg Inverter
3.2. Experiment Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kim, S.Y.; Song, S.G.; Park, S.J. Minimum Loss Discontinuous Pulse-Width Modulation Per Phase Method for Three-Phase Four-Leg Inverter. IEEE Access 2020, 8, 122923–122935. [Google Scholar] [CrossRef]
- Chee, S.J.; Kim, H.S.; Sul, S.K.; Ko, S. Common-Mode Voltage Reduction of Three-Level Four-Leg PWM Converter. IEEE Trans. Ind. Appl. 2015, 51, 4006–4016. [Google Scholar] [CrossRef]
- Dai, N.-Y.; Wong, M.-C.; Ng, F.; Han, Y.-D. A FPGA-Based Generalized Pulse Width Modulator for Three-Leg Center-Split and Four-Leg Voltage Source Inverters. IEEE Trans. Power Electron. 2008, 23, 1472–1484. [Google Scholar] [CrossRef]
- Kim, J.H.; Sul, S.K. A carrier-based PWM method for three-phase four-leg voltage source converters. IEEE Trans. Power Electron. 2004, 19, 66–75. [Google Scholar] [CrossRef]
- Kim, J.H.; Sul, S.K.; Kim, H.; Ji, J.K. A PWM strategy for four-leg voltage source converters and applications to a novel line interactive UPS in a three phase four wire system. In Proceedings of the 39th IEEE Industry Applications Conference, IAS 2004, Seattle, WA, USA, 3–7 October 2004; pp. 2202–2209. [Google Scholar]
- Videt, A.; Moigne, P.L.; Idir, N.; Baudesson, P.; Cimetière, X. A New Carrier-Based PWM Providing Common-Mode-Current Reduction and DC-Bus Balancing for Three-Level Inverters. IEEE Trans. Ind. Electron. 2007, 54, 3001–3011. [Google Scholar] [CrossRef]
- Li, F.; He, F.; Ye, Z.; Fernando, T.; Wang, X.; Zhang, X. A Simplified PWM Strategy for Three-Level Converters on Three-Phase Four-Wire Active Power Filter. IEEE Trans. Power Electron. 2018, 33, 4396–4406. [Google Scholar] [CrossRef]
- Tan, L.; Wu, B.; Narimani, M.; Xu, D.; Joos, G. Multicarrier-Based PWM Strategies With Complete Voltage Balance Control for NPC Inverters. IEEE Trans. Ind. Electron. 2018, 65, 2863–2872. [Google Scholar] [CrossRef]
- Zhang, R.; Prasad, V.H.; Boroyevich, D.; Lee, F.C. Three-dimensional space vector modulation for four leg voltage source converters. IEEE Trans. Power Electron. 2002, 17, 314–326. [Google Scholar] [CrossRef]
- Aissani, M.; Aliouane, K. Three-dimensional space vector modulation for four-leg voltage-source converter used as an active compensator. In Proceedings of the International Symposium on Power Electronics, Electrical Drives, Automation and Motion, SPEEDAM 2010, Pisa, Italy, 14–16 June 2010; pp. 1416–1421. [Google Scholar]
- Golwala, H.; Chudamani, R. New Three-Dimensional Space Vector-Based Switching Signal Generation Technique Without Null Vectors and With Reduced Switching Losses for a Grid-Connected Four-Leg Inverter. IEEE Trans. Power Electron. 2016, 31, 1026–1035. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, P.; Zhao, S.; Gao, J.; Sun, X. Research on a discontinuous three-dimensional space vector modulation strategy for the three-phase four-leg inverter. In Proceedings of the IEEE 8th International Power Electronics and Motion Control Conference, IPEMC-ECCE Asia 2016, Hefei, China, 22–26 May 2016; pp. 575–580. [Google Scholar]
- Llonch-Masachs, M.; Heredero-Peris, D.; Montesinos-Miracle, D.; Rull-Duran, J. Understanding the three and four-leg inverter Space Vector. In Proceedings of the 18th European Conference on Power Electronics and Applications, EPE ECCE Europe 2016, Karlsruhe, Germany, 5–9 September 2016; pp. 1–10. [Google Scholar]
- Rojas, F.; Kennel, R.; Cardenas, R.; Repenning, R.; Clare, J.C.; Diaz, M. A New Space-Vector-Modulation Algorithm for a Three-Level Four-Leg NPC Inverter. IEEE Trans. Energy Convers. 2017, 32, 23–32. [Google Scholar] [CrossRef]
- Lin, F.; Tan, K.; Lai, Y.; Luo, W. Intelligent PV Power System with Unbalanced Current Compensation Using CFNN-AMF. IEEE Trans. Power Electron. 2019, 34, 8588–8598. [Google Scholar] [CrossRef]
- Hadidian Moghaddam, M.J.; Kalam, A.; Miveh, M.R.; Naderipour, A.; Gandoman, F.H.; Ghadimi, A.A.; Abdul-Malek, Z. Improved Voltage Unbalance and Harmonics Compensation Control Strategy for an Isolated Microgrid. Energies 2018, 11, 2688. [Google Scholar] [CrossRef] [Green Version]
- Jung, K.; Suh, Y. Analysis and Control of Neutral-Point Deviation in Three-Level NPC Converter Under Unbalanced Three-Phase AC Grid. IEEE Trans. Ind. Appl. 2019, 55, 4944–4955. [Google Scholar] [CrossRef]
- Douglass, P.J.; Trintis, I.; Munk-Nielsen, S. Voltage unbalance compensation with smart three-phase loads. In Proceedings of the Power Systems Computation Conference, PSCC 2016, Genoa, Italy, 20–24 June 2016; pp. 1–7. [Google Scholar]
- Hu, J.; Fu, X.; Liao, T.; Chen, X.; Ji, K.; Sheng, H.; Zhao, W. Low Voltage Distribution Network Line Loss Calculation Based on The Theory of Three-phase Unbalanced Load. In Proceedings of the 3rd International Conference on Intelligent Energy and Power Systems, IEPS 2017, Hangzhou, China, 10 October 2017; pp. 65–71. [Google Scholar]
- Han, J.; Oh, Y.S.; Gwon, G.H.; Kim, D.U.; Noh, C.H.; Jung, T.H.; Lee, S.J.; Kim, C.H. Modeling and Analysis of a Low-Voltage DC Distribution System. Resources 2015, 4, 713–735. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Konikkara, D.D.; Monti, A. A generalized approach for harmonics and unbalanced current compensation through inverter interfaced distributed generator. In Proceedings of the IEEE 5th International Symposium on Power Electronics for Distributed Generation Systems, PEDG 2014, Galway, Ireland, 24–27 June 2014; pp. 1–8. [Google Scholar]
- Weidong, J.; Zhang, X.; Wang, W.; Wang, J.; Zhai, F.; Li, J.; Li, L. A Novel Modulation Strategy With Unconditional Neutral Point Voltage Balance and Three Switching Actions in One Switching Cycle for Neutral Point Clamped Three-Level Converter. IEEE Trans. Ind. Electron. 2019, 66, 5025–5038. [Google Scholar] [CrossRef]
- Choi, W.-H.; Lam, C.-S.; Wong, M.-C.; Han, Y.-D. Analysis of DC-Link Voltage Controls in Three-Phase Four-Wire Hybrid Active Power Filters. IEEE Trans. Power Electron. 2013, 28, 2180–2191. [Google Scholar] [CrossRef]
- Dong, G.; Ojo, O. Current Regulation in Four-Leg Voltage-Source Converters. IEEE Trans. Ind. Electron. 2007, 54, 2095–2105. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, J.; Li, J. Modeling, Analysis, and Mitigation of Load Neutral Point Voltage for Three-Phase Four-Leg Inverter. IEEE Trans. Ind. Electron. 2013, 60, 2010–2021. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, B.; Xie, F. A Novel SVPWM for Three-Level NPC Inverter Based on m-Mode Controllability. IEEE Trans. Ind. Electron. 2018, 65, 6055–6065. [Google Scholar] [CrossRef]
- Bifaretti, S.; Lidozzi, A.; Solero, L.; Crescimbini, F. Comparison of modulation techniques for active split dc-bus three-phase four-leg inverters. In Proceedings of the IEEE Energy Conversion Congress and Exposition, ECCE 2014, Pittsburgh, PA, USA, 14–18 September 2014; pp. 14–18. [Google Scholar]
- Kwak, Y.-g.; Heo, D.-h.; Kim, S.-p.; Song, S.-G.; Park, S.-J.; Kang, F.-s. Reliability and Economic Efficiency Analysis of 4-leg Inverter Compared with 3-leg Inverters. Electronics 2021, 10, 87. [Google Scholar] [CrossRef]
- Lin, Z.; Ruan, X.; Jia, L.; Zhao, W.; Liu, H.; Rao, P. Optimized Design of the Neutral Inductor and Filter Inductors in Three-Phase Four-Wire Inverter with Split DC-Link Capacitors. IEEE Trans. Power Electron. 2019, 34, 247–262. [Google Scholar] [CrossRef]
- Dai, M.; Marwali, M.N.; Jung, J.W.; Keyhani, A. A Three-Phase Four-Wire Inverter Control Technique for a Single Distributed Generation Unit in Island Mode. IEEE Trans. Power Electron. 2008, 23, 322–331. [Google Scholar] [CrossRef]
- Bozalakov, D.; Meersman, B.; Bottenberg, A.L.; Rens, J.; Desmet, J.; Vandevelde, L. Dc-bus voltage balancing controllers for split dc-link four-wire inverters and their impact on the quality of the injected currents. In Proceedings of the 24th Inter-national Conference and Exhibition on ELECTRICITY DISTRIBUTION Glasgow, CIRED 2017, Glasgow, UK, 12–15 June 2017; pp. 564–568. [Google Scholar]
- Kjaer, S.; Pedersen, J.; Blaabjerg, F. A review of single-phase grid-connected inverters for photovoltaic modules. IEEE Trans. Ind. Appl. 2005, 41, 1292–1306. [Google Scholar] [CrossRef]
- Kim, S.-P.; Song, S.-G.; Park, S.-J.; Kang, F.-S. Imbalance Compensation Algorithm using Effective and Reactive Power for Split DC-link Capacitor 3-Leg Inverter. IEEE Access 2021. under review. [Google Scholar]
Item | Value | Unit |
---|---|---|
dc-link voltage | 800 | V |
Filter inductor | 1.5 | mH |
Neutral inductor | 3.6 | mH |
dc electrolytic capacitor * | 6800 | μF |
ac electrolytic capacitor * | 50 | μF |
Filter capacitor | 40 | μF |
Switching frequency | 10 | kHz |
Load Power | 30 | kW |
Power factor | 0.99 | PF |
Load unbalance factor (LUF) | 0~30 | % |
Item | Value | Unit |
---|---|---|
Operating range of input voltage | DC 650–830 | V |
Maximum allowable input voltage | DC 900 | V |
Output power | 10 | kW |
Output voltage | AC 380 | V |
Output current | 20 | A |
Output frequency | 60 | Hz |
Total harmonic distortion | <2 | % |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.-P.; Song, S.-G.; Park, S.-J.; Kang, F.-s. Output Voltage Imbalance Compensation Using dc Offset Voltage for Split dc-Link Capacitor 3-Leg Inverter. Electronics 2021, 10, 1029. https://doi.org/10.3390/electronics10091029
Kim S-P, Song S-G, Park S-J, Kang F-s. Output Voltage Imbalance Compensation Using dc Offset Voltage for Split dc-Link Capacitor 3-Leg Inverter. Electronics. 2021; 10(9):1029. https://doi.org/10.3390/electronics10091029
Chicago/Turabian StyleKim, Sun-Pil, Sung-Geun Song, Sung-Jun Park, and Feel-soon Kang. 2021. "Output Voltage Imbalance Compensation Using dc Offset Voltage for Split dc-Link Capacitor 3-Leg Inverter" Electronics 10, no. 9: 1029. https://doi.org/10.3390/electronics10091029
APA StyleKim, S. -P., Song, S. -G., Park, S. -J., & Kang, F. -s. (2021). Output Voltage Imbalance Compensation Using dc Offset Voltage for Split dc-Link Capacitor 3-Leg Inverter. Electronics, 10(9), 1029. https://doi.org/10.3390/electronics10091029