What Do We Know about The Use of Virtual Reality in the Rehabilitation Field? A Brief Overview
Abstract
:1. Introduction
2. Literature Data
2.1. Research Strategy
2.2. Stroke
2.3. Parkinson’s Disease
2.4. Cognitive Decline
2.5. Multiple Sclerosis
Sample (VR/CG) | Paradigm | Outcome | ||
---|---|---|---|---|
stroke | Kang et al., 2012 [36] | 10 TOF 10 no TOF 10 CG | 30 min, 5/week, 4 weeks CG1: CR CG2: CR + conventional treadmill EG: CR + TOF | Better balance and gait following TOF than CG |
Park et al., 2013 [43] | 8/8 | 2 × 60 min, 5/week, 4 weeks CG: CR + PT (30 min, 3/week, 4 weeks EG: CR + VR-based PT (30 min, 3/week, 4 weeks) | Better stride length after VR | |
Lee et al., 2014 [35] | 10/11 | 30 min, 5/week, 4 weeks CG: CR + PT (30 min, 3/week, 4 weeks) EG: CR + VR-based PT (30 min, 3/week, 4 weeks) | Better step length, stride length, and gait velocity after VR; no effects for TUG and BBS | |
Jaffe et al., 2004 [39] | 10/10 | 60 min, 3/week, 2 weeks CG: real stepping EG: VR stepping | Better velocity, stride length, obstacle clearance capacity, and walking endurance after VR | |
Kim et al., 2012 [38] | 9 VR + FES 9 FES 9 CG | 30 min, 5/week, 8 weeks + TGT (20 min, 3/week, 8 weeks FES: CR + TGT + FES (20 min, 3/week, 8 weeks) VR-FES: CR + TGT + VR-FES (20 min, 3/week, 8 weeks) | Better muscle strength after VR-FES and FES Better gait speed after VR-FES Better BBS in all groups | |
Jung et al., 2012 [37] | 11/10 | CG: TGT (30 min, 5/week, 3 weeks) EG: VR-based TGT (30 min, 5/week, 3 weeks) | Better TUG and ABC after VR-TGT | |
Crosbie et al., 2012 [34] | 9/9 | CG: CR (reach to target, reach and grasp), 30–45 min, 3/week, 3 weeks) EG: upper limb VR tasks 30–45 min, 3/week, 3 weeks | No difference | |
Ögün et al., 2019 [33] | 33/32 | CG: CR (gripping and handling) 45 min, 3/week, 6 weeks + passive VR therapy (15 min, 3/week, 6 weeks) EG: upper limb VR tasks, 60 min, 3/week, 6 weeks | Better FMUE, ARAT, FIM, and PASS after VR | |
Gueye et al., 2021 [44] | 25/25 | 45min, 4/week, 3 weeks CG: CR EG: Armeo training | Better FMUE, FIM, and MoCA after VR | |
Johnson et al., 2020 [45] | 30/30 | 45 min, 2/week, 8 weeks CG: CR EG: upper limb VR training | Better FMUE after VR | |
Lin et al., 2020 [46] | 38/114 | 45 min, 2/week, 8 weeks CG: CR EG: CR + VR training (15min, 2/day) | better upper limb muscle strength, depression, and anxiety scores; no difference in the functional status | |
Parkinson’s disease | Lee et al., 2015 [66] | 10/10 | CR: neurodevelopment treatment + FES 30 min, 5/week, 6 weeks EG: CR + VR dance exercise (30 min) | Better BBS after VR |
Yang et al., 2015 [72] | 11/12 | 50 min, 2/week, 6 weeks CG: PT EG: VR-based PT | Better BBS after VR | |
Yen et al., 2011 [73] | 14 +VR 14 −VR 14 CG | 30 min, 2/week, 6 weeks CG1: PT CG2: CR EG: VR-based PT | Better equilibrium scores, verbal reaction time after VR | |
Liao et al., 2015 [67] | 12 VR 12 active CG 12 passive CG | 45 min, 2/week, 6 weeks EG: balance board therapy + TGT (15min) CG1: CR CG2: fall prevention education | Better obstacle-crossing performance, dynamic balance, TUG after VR | |
Pedreira et al., 2013 [68] | 22/22 | 50 min, 3/week,4 weeks EG: Nintendo Wii therapy CG: CR | Better UPDRS and PDQ-39 after VR | |
Pompeu et al., 2012 [69] | 16/16 | 30 min, 2/week, 7 weeks CG: CR EG: CR + 30min Nintendo Wii therapy | Better UPDRS-II after VR | |
Shen et al., 2014 [70] | 26/25 | 3/week, 4 weeks in lab, then 5/week, 4 weeks at home, then 3/week, 4 weeks in lab EG: lab (15 min VR dancing, 15 min VR-PT, 30 min TGT), home (20 min fall-prone activities CG: lab (60 min) home (20 min) of stepping and walking exercises | Better balance, fall rate after VR | |
van den Heuvel et al., 2014 [71] | 17/16 | 60 min, 2/week, 5 weeks EG: balance board therapy CG: PT | Better Functional Reach Test after VR | |
Pazzaglia et al., 2020 [75] | 26/25 | 40 min, 3/week, 6 weeks EG: VR therapy CG: CR | Better BBS and overall gait performance after VR | |
Cikajilo and Potisk, 2019 [76] | 10/10 | 30 min, 3/week, 3 weeks EG: immersive VR therapy CG: non-immersive VR therapy | Better upper limb function after immersive VR therapy | |
Feng et al., 2019 | 14/14 | 45 min, 5/week, 12 weeks EG: VR-based gait training CG: CR | Better balance and gait (BBS, TUG, UPDRS III after VR | |
Santos et al., 2019 [74] | 15/15 + 15 | 50 min, 2/week, 8 weeks EG: VR + CR CG: VR therapy CG: CR | No significant differences | |
Cognitive decline | Bourrelier et al., 2016 [91] | 7 MCI 17 HC | 40 min Immersive harvesting-fruit scenario Physiotherapist-led exercise session | Preferred VR experience |
Eisapour et al., 2018 [92] | 6 dementia | 20 min, 5/week, 1 week Therapist-guided exercise Immersive VR farm environment Immersive VR gym environment | No difference | |
Manera et al., 2016 [93] | 10 dementia 10 HC | VR forest 15 min | Better mood but higher fear/anxiety after VR | |
Mendez et al., 2015 [94] | 5 FTD | Conference table immersive virtual environment | Better social-emotional behaviour after VR | |
Moyle et al., 2018 [95] | 10 dementia 10 HC | VR forest 15 min | Better mood but higher fear/anxiety | |
Optale et al., 2010 [96] | 36 MCI | VR memory training 2/week, 12 weeks | Better cognitive outcome after VR | |
Siriaraya et al., 2014 [97] | 20 dementia 8 HC | Reminiscence room Virtual river and park tours Gardening | Preferred VR experience | |
Aruanno et al., 2017 [98] | 11 AD | 15 min Short-term memory activity Memory game Memory game with spatial mapping | Preferred VR experience | |
Hofmann et al., 2003 [99] | 9 AD 9 MDD 10 HC | VR shopping route 3/week, 12 weeks | Preferred VR experience | |
Man et al., 2012 [100] | 20/24 MCI | 30 min, 2–3/week EG: non-immersive VR memory-training CG: therapist-led memory training sessions | Better memory task after VR | |
Karssemeijer et al., 2019 [102] | 38/38 + 38 dementia | 30 min, 3/week, 12 weeks EG: exergame training CG: aerobic training CG: active control intervention | Better level of frailty after VR | |
Multiple sclerosis | Russo et al., 2018 [110] | 23/21 | EG: RAGT + VR CG RAGR-VR | Better gait performance after RAGT + VR |
Stratton et al., 2015 [111] | 26/19 | EG: VR daily activities CG: CR daily activities | better performance of daily activities after VR | |
Robinson et al., 2015 [121] | 56/-- | Balance board therapy | Better balance and gait after VR | |
Gutiérrez et al., 2013 [118] | 25/25 | EG: at home balance board therapy (20 min, 4/week, 10 weeks) CG: CR (40 min, 2/week, 10 weeks) | Better BBS and TUG after VR training | |
Kramer et al., 2014 [120] | 70/-- | Balance board therapy | Better balance and gait after VR | |
Eftekharsadat et al., 2015 [117] | 30/-- | Balance board therapy | Better balance and gait after VR | |
Thomas et al., 2014 [112] | 30/-- | At home balance board therapy | Better balance and gait after VR | |
Thomas S et al., 2017 [113] | 30/-- | Mii-vitaliSe testing | Preferred VR experience | |
Leocani L et al., 2007 [122] | 12/-- | VR-aided short-term motor learning | Better performance | |
Jonsdottir J et al., 2017 [107] | 10/6 | EG: VR upper limb motor tasks CG: CR upper limb motor tasks | Better performance after VR | |
Gutierrez et al., 2013 [118] | 25/25 | EG: VR sensorimotor tasks CG: CR sensorimotor tasks | Better performance after VR | |
Kalron et al., 2016 [119] | 16/16 | EG: CAREN CG: PT | Better balance and gait after VR | |
Peruzzi et al., 2016 [123] | 8/-- | VR-based dual tasking and obstacle negotiation | Better performance after VR | |
Prosperini et al., 2013 [20] | 36/-- | At home balance board therapy | Better balance and gait after VR | |
Brichetto G et al., 2013 [116] | 36/-- | Balance board therapy | Better balance and gait after VR | |
Calabrò et al., 2017 [114] | 34/-- | EG: RAGT + VR CG RAGR-VR | Better balance and gait after VR | |
Molhemi et al., 2021 [129] | 19/20 | 45 min, 3/week, 6 weeks EG: exergames using Kinect CG: conventional balance exercises | No significant differences but falls and overall cognitive-motor function | |
Cuesta-Gómez et al., 2020 [130] | 15/15 | 60 min, 2/week, 10 weeks EG: serious Games for the upper limb (15 min) + CR (45 min) CG: CR (60 min) | Better unilateral gross manual dexterity, fine manual dexterity, and coordination following VR | |
Waliño-Paniagua et al., 2019 [131] | 13/13 | 30 min, 2/week, 3 weeks EG: occupational therapy + VR games CG: conventional balance exercises | No significant differences in manual dexterity | |
Lamargue-Hamel et al., 2015 [124] | 30/-- | Cognitive impairment assessment | VR assessments are promising in identifying cognitive impairment in MS |
3. Discussion
3.1. Potential Advantages and Side Effects of VR Rehabilitation
3.2. Issues for Research
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Weiss, P.L.; Kizony, R.; Feintuch, U.; Katz, N. Virtual reality in neurorehabilitation. In Textbook of Neural Repair and Rehabilitation; Selzer, M., Clarke, S., Cohen, L., Duncan, P., Gage, F., Eds.; Cambridge University Press: Cambridge, UK, 2006; pp. 182–197. [Google Scholar]
- Schultheis, M.T.; Rizzo, A.A. The Application of Virtual Reality Technology in Rehabilitation. Rehabil. Psychol. 2001, 46, 296–311. [Google Scholar] [CrossRef]
- Wilson, P.N.; Foreman, N.; Stanton, D. Virtual reality, disability and rehabilitation. Disabil. Rehabilit. 1997, 19, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Henderson, A.; Korner-Bitensky, N.; Levin, M. Virtual Reality in Stroke Rehabilitation: A Systematic Review of Its Effectiveness for Upper Limb Motor Recovery. Top. Stroke Rehabil. 2007, 14, 52–61. [Google Scholar] [CrossRef]
- Juliano, J.M.; Spicer, R.P.; Vourvopoulos, A.; Lefebvre, S.; Jann, K.; Ard, T.; Liew, S.-L. Embodiment is related to better performance on a brain–computer interface in immersive virtual reality: A pilot study. Sensors 2020, 20, 1204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wingham, J.; Adie, K.; Turner, D.; Schofield, C.; Pritchard, C. Participant and caregiver experience of the Nintendo Wii Sports TM after stroke: Qualitative study of the trial of WiiTM in stroke (TWIST). Clin. Rehabil. 2015, 29, 295–305. [Google Scholar] [CrossRef]
- Piron, L.; Turolla, A.; Tonin, P.; Piccione, F.; Lain, L.; Dam, M. Satisfaction with care in post-stroke patients undergoing a telerehabilitation programme at home. J. Telemed. Telecare 2008, 14, 257–260. [Google Scholar] [CrossRef] [PubMed]
- Donoso Brown, E.V.; Dudgeon, B.J.; Gutman, K.; Moritz, C.T.; McCoy, S.W. Understanding upper extremity home programs and the use of gaming technology for persons after stroke. Disabil. Health J. 2015, 8, 507–513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plow, M.; Finlayson, M. A qualitative study exploring the usability of Nintendo Wii fit among persons with multiple sclerosis. Occup. Ther. Int. 2014, 21, 21–32. [Google Scholar] [CrossRef]
- Miller, K.J.; Adair, B.S.; Pearce, A.J.; Said, C.M.; Ozanne, E.; Morris, M.M. Effectiveness and feasibility of virtual reality and gaming system use at home by older adults for enabling physical activity to improve health-related domains: A systematic review. Age Ageing 2014, 43, 188–195. [Google Scholar] [CrossRef] [Green Version]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; The PRISMA Group. Preferred reporting items for systematic re-views and meta-analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [Green Version]
- Higgins, J.P.T.; Altman, D.G.; Gotzsche, P.C. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011, 343, 5928. [Google Scholar] [CrossRef] [Green Version]
- Heeter, C. Being There: The Subjective Experience of Presence. Presence Teleoperators Virtual Environ. 1992, 1, 262–271. [Google Scholar] [CrossRef]
- Draper, J.V.; Kaber, D.B.; Usher, J.M. Telepresence. Hum. Factors 1998, 40, 354–375. [Google Scholar] [CrossRef] [PubMed]
- Riva, G. Virtual environments in clinical psychology. Psychotherapy 2003, 40, 68–76. [Google Scholar] [CrossRef] [Green Version]
- Mat Rosly, M.; Mat Rosly, H.; Davis, O.A.M.G.M.; Husain, R.; Hasnan, N. Exergaming for individuals with neurological disability: A systematic review. Disabil. Rehabil. 2017, 39, 727–735. [Google Scholar] [CrossRef] [PubMed]
- Levin, M.F.; Weiss, P.L.; Keshner, E.A. Emergence of virtual reality as a tool for upper limb rehabilitation: Incorporation of motor control and motor learning principles. Phys. Ther. 2015, 95, 415–425. [Google Scholar] [CrossRef] [Green Version]
- Laver, K.E.; Lange, B.; George, S.; Deutsch, J.E.; Saposnik, G.; Crotty, M. Virtual reality for stroke rehabilitation. Cochrane Database Syst. Rev. 2017, CD008349. [Google Scholar] [CrossRef] [Green Version]
- Bonnechère, B.; Jansen, B.; Omelina, L.; Van Sint Jan, S. The use of commercial video games in rehabilitation: A systematic review. Int. J. Rehabil. Res. 2016, 39, 277–290. [Google Scholar] [CrossRef]
- Prosperini, L.; Fortuna, D.; Giannì, C.; Leonardi, L.; Marchetti, M.R.; Pozzilli, C. Home-based balance training using the Wii balance board: A randomized, crossover pilot study in multiple sclerosis. Neurorehabilit. Neural Repair 2013, 27, 516–525. [Google Scholar] [CrossRef]
- Sparks, D.A.; Coughlin, L.M.; Chase, D.M. Did too much Wii cause your patient’s injury? J. Fam. Pract. 2011, 60, 404–409. [Google Scholar]
- Pietrzak, E.; Cotea, C.; Pullman, S. Using commercial video games for upper limb stroke rehabilitation: Is this the way of the future? Top. Stroke Rehabil. 2014, 21, 152–162. [Google Scholar] [CrossRef]
- Saposnik, G.; Levin, M. For the Stroke Outcome Research Canada (SORCan) Working Group. Virtual reality in stroke rehabilitation: A meta-analysis and implications for clinicians. Stroke 2011, 42, 1380–1386. [Google Scholar] [CrossRef] [PubMed]
- Barry, G.; Galna, B.; Rochester, L. The role of exergaming in Parkinson’s disease rehabilitation: A systematic re-view of the evidence. J. Neuroeng. Rehabil. 2014, 1, 33. [Google Scholar] [CrossRef] [Green Version]
- Cheok, G.; Tan, D.; Low, A.; Hewitt, J. Is Nintendo Wii an effective intervention for Individuals with stroke? A systematic review and meta-analysis. J. Am. Med. Dir. Assoc. 2015, 16, 923–932. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, L.R.A.; Carregosa, A.A.; Masruha, M.R.; Dos Santos, P.A.; Da Silveira Coêlho, M.L.; Ferraz, D.D.; Da Silva Ribeiro, N.M. The use of Nintendo Wii in The rehabilitation of post-stroke patients: A systematic review. J. Stroke Cereb. Dis. 2015, 24, 2298–2305. [Google Scholar] [CrossRef] [PubMed]
- Ravenek, K.E.; Wolfe, D.L.; Hitzig, S.L. A scoping review of video gaming in rehabilitation. Disabil. Rehabil. Assist. Technol. 2016, 6, 445–453. [Google Scholar] [CrossRef] [PubMed]
- Cano Porras, D.; Siemonsma, P.; Inzelberg, R.; Zeilig, G.; Plotnik, M. Advantages of virtual Reality in the rehabilitation of balance and gait: Systematic review. Neurology 2018, 22, 1017–1025. [Google Scholar] [CrossRef]
- Dockx, K.; Bekkers, E.M.; Bergh, V.V.D.; Ginis, P.; Rochester, L.; Hausdorff, J.M.; Mirelman, A.; Nieuwboer, A. Virtual reality for rehabilitation in Parkinson’s disease. Cochrane Database Syst. Rev. 2016, 12, CD010760. [Google Scholar] [CrossRef]
- Massetti, T.; Trevizan, I.L.; Arab, C.; Favero, F.M.; Ribeiro-Papa, D.C.; de Mello Monteiro, C.B. Virtual reality in multiple sclerosis—A systematic review. Mult. Scler. Relat. Disord. 2016, 8, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Viňas-Diz, S.; Sobrido-Prieto, M. Virtual reality for therapeutic purposes in stroke: A systematic review. Neurologia 2016, 31, 255–277. [Google Scholar] [CrossRef] [PubMed]
- Gates, N.J.; Rutjes, A.W.; Di Nisio, M.; Karim, S.; Chong, L.Y.; March, E.; Martínez, G.; Vernooij, R.W. Computerised cognitive training for 12 or more weeks for maintaining cognitive function in cognitively healthy people in late life. Cochrane Database Syst. Rev. 2020, 2, CD012277. [Google Scholar] [CrossRef]
- Ögün, M.N.; Kurul, R.; Yaşar, M.F.; Turkoglu, S.A.; Avci, Ş.; Yildiz, N. Effect of Leap Motion-Based 3D Immersive Virtual Reality Usage on Upper Extremity Function in Ischemic Stroke Patients. Arq. Neuro-Psiquiatr. 2019, 77, 681–688. [Google Scholar] [CrossRef] [Green Version]
- Crosbie, J.; Lennon, S.; McGoldrick, M.; McNeill, M.; McDonough, S. Virtual Reality in the Rehabilitation of the Arm after Hemiplegic Stroke: A Randomized Controlled Pilot Study. Clin. Rehabil. 2012, 26, 798–806. [Google Scholar] [CrossRef]
- Lee, C.-H.; Kim, Y.; Lee, B.-H. Augmented Reality-Based Postural Control Training Improves Gait Function in Patients with Stroke: Randomized Controlled Trial. Hong Kong Physiother. J. 2014, 32, 51–57. [Google Scholar] [CrossRef]
- Kang, H.-K.; Kim, Y.; Chung, Y.; Hwang, S. Effects of Treadmill Training with Optic Flow on Balance and Gait in Individuals Following Stroke: Randomized Controlled Trials. Clin. Rehabil. 2012, 26, 246–255. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.; Yu, J.; Kang, H. Effects of Virtual Reality Treadmill Training on Balance and Balance Self-Efficacy in Stroke Patients with a History of Falling. J. Phys. Ther. Sci. 2012, 24, 1133–1136. [Google Scholar] [CrossRef] [Green Version]
- Kim, I.-C.; Lee, B.-H. Effects of Augmented Reality with Functional Electric Stimulation on Muscle Strength, Balance and Gait of Stroke Patients. J. Phys. Ther. Sci. 2012, 24, 755–762. [Google Scholar] [CrossRef] [Green Version]
- Jaffe, D.L.; Brown, D.A.; Pierson-Carey, C.D.; Buckley, E.L.; Lew, H.L. Stepping over Obstacles to Improve Walking in Individuals with Poststroke Hemiplegia. J. Rehabil. Res. Dev. 2004, 41, 283. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Han, X.-G.; Sheng, J.; Ma, S.-J. Virtual Reality for Improving Balance in Patients after Stroke: A Systematic Review and Meta-Analysis. Clin. Rehabil. 2016, 30, 432–440. [Google Scholar] [CrossRef] [PubMed]
- Corbetta, D.; Imeri, F.; Gatti, R. Rehabilitation That Incorporates Virtual Reality Is More Effective than Standard Rehabilitation for Improving Walking Speed, Balance and Mobility after Stroke: A Systematic Review. J. Physiother. 2015, 61, 117–124. [Google Scholar] [CrossRef] [Green Version]
- Iruthayarajah, J.; McIntyre, A.; Cotoi, A.; Macaluso, S.; Teasell, R. The Use of Virtual Reality for Balance among Individuals with Chronic Stroke: A Systematic Review and Meta-Analysis. Top. Stroke Rehabil. 2017, 24, 68–79. [Google Scholar] [CrossRef]
- Park, Y.-H.; Lee, C.; Lee, B.-H. Clinical Usefulness of the Virtual Reality-Based Postural Control Training on the Gait Ability in Patients with Stroke. J. Exerc. Rehabil. 2013, 9, 489–494. [Google Scholar] [CrossRef]
- Gueye, T.; Dedkova, M.; Rogalewicz, V.; Grunerova-Lippertova, M.; Angerova, Y. Early post-stroke rehabilitation for upper limb motor function using virtual reality and exoskeleton: Equally efficient in older patients. Neurol. Neurochir. Polska 2021, 55, 91–96. [Google Scholar] [CrossRef]
- Johnson, L.; Bird, M.L.; Muthalib, M.; Teo, W.P. An Innovative STRoke Interactive Virtual therapy (STRIVE) Online Platform for Community-Dwelling Stroke Survivors: A Randomized Controlled Trial. Arch. Phys. Med. Rehabil. 2020, 101, 1131–1137. [Google Scholar] [CrossRef] [PubMed]
- Lin, R.C.; Chiang, S.L.; Heitkemper, M.M.; Weng, S.M.; Lin, C.F.; Yang, F.C.; Lin, C.H. Effectiveness of Early Rehabilitation Combined with Virtual Reality Training on Muscle Strength, Mood State, and Functional Status in Patients with Acute Stroke: A Randomized Controlled Trial. Worldviews Evid. Based Nurs. 2020, 17, 158–167. [Google Scholar] [CrossRef] [PubMed]
- Housman, S.J.; Scott, K.M.; Reinkensmeyer, D.J. A Randomized Controlled Trial of Gravity-Supported, Computer-Enhanced Arm Exercise for Individuals with Severe Hemiparesis. Neurorehabil. Neural Repair 2009, 23, 505–514. [Google Scholar] [CrossRef]
- Yavuzer, G.; Senel, A.; Atay, M.B.; Stam, H.J. “Playstation Eyetoy Games” Improve Upper Extremity-Related Motor Functioning in Subacute Stroke: A Randomized Controlled Clinical Trial. Eur. J. Phys. Rehabil. Med. 2008, 44, 237–244. [Google Scholar]
- Yang, Y.R.; Tsai, M.P.; Chuang, T.Y.; Sung, W.H.; Wang, R.Y. Virtual Reality-Based Training Improves Community Ambulation in Individuals with Stroke: A Randomized Controlled Trial. Gait Posture 2008, 28, 201–206. [Google Scholar] [CrossRef]
- Walker, C.; Brouwer, B.J.; Culham, E.G. Use of Visual Feedback in Retraining Balance Following Acute Stroke. Phys. Ther. 2000, 80, 886–895. [Google Scholar] [CrossRef] [Green Version]
- Merians, A.S.; Jack, D.; Boian, R.; Tremaine, M.; Burdea, G.C.; Adamovich, S.V.; Recce, M.; Poizner, H. Virtual Reality-Augmented Rehabilitation for Patients Following Stroke. Phys. Ther. 2002, 82, 898–915. [Google Scholar] [CrossRef] [Green Version]
- Schultheis, M.T.; Himelstein, J.; Rizzo, A.A. Virtual Reality and Neuropsychology: Upgrading the Current Tools. J. Head Trauma Rehabil. 2002, 17, 378–394. [Google Scholar] [CrossRef] [PubMed]
- Weiss, P.L.T.; Katz, N. The Potential of Virtual Reality for Rehabilitation. J. Rehabil. Res. Dev. 2004, 41, 7–10. [Google Scholar]
- Calabrò, R.S.; Naro, A.; Russo, M.; Leo, A.; De Luca, R.; Balletta, T.; Buda, A.; La Rosa, G.; Bramanti, A.; Bramanti, P. The role of virtual reality in improving motor performance as revealed by EEG: A randomized clinical trial. J. Neuroeng. Rehabil. 2017, 14, 53. [Google Scholar] [CrossRef] [PubMed]
- De Luca, R.; Russo, M.; Naro, A.; Tomasello, P.; Leonardi, S.; Santamaria, F.; Desireè, L.; Bramanti, A.; Silvestri, G.; Bramanti, P.; et al. Effects of virtual reality-based training with BTs-Nirvana on functional recovery in stroke patients: Preliminary considerations. Int. J. Neurosci. 2018, 128, 791–796. [Google Scholar] [CrossRef]
- De Luca, R.; Torrisi, M.; Piccolo, A.; Bonfiglio, G.; Tomasello, P.; Naro, A.; Calabrò, R.S. Improving post-stroke cognitive and behavioral abnormalities by using virtual reality: A case report on a novel use of nirvana. Appl. Neuropsychol. Adult 2018, 25, 581–585. [Google Scholar] [CrossRef]
- Huang, X.; Naghdy, F.; Du, H.; Naghdy, G.; Murray, G. Design of adaptive control and virtual reality–based fine hand-motion rehabilitation system and its effects in subacute stroke patients. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 2018, 6, 678–686. [Google Scholar] [CrossRef]
- Subramanian, S.; Knaut, L.A.; Beaudoin, C.; Levin, M.F. Enhanced feedback during training in virtual versus real world environments. In Proceedings of the 2007 Virtual Rehabilitation, Venice, Italy, 27–29 September 2007; IEEE: Piscataway, NJ, USA; pp. 8–13.
- Subramanian, S.K.; Levin, M.F. Viewing medium affects arm motor performance in 3D virtual environments. J. Neuroeng. Rehabil. 2011, 8, 36. [Google Scholar] [CrossRef] [Green Version]
- Lupu, R.G.; Irimia, D.C.; Ungureanu, F.; Poboroniuc, M.S.; Moldoveanu, A. BCI and FES based ther-apy for stroke rehabilitation using VR facilities. Wirel. Commun. Mob. Comput. 2018, 2018, 4798359. [Google Scholar] [CrossRef] [Green Version]
- Gauthier, L.; Dehaut, F.; Joanette, Y. The Bells Test: A quantitative and qualitative test for visual neglect. Int. J. Clin. Neuropsychol. 1989, 11, 49–54. [Google Scholar]
- Schenkenberg, T.; Bradford, D.C.; Ajax, E.T. Line bisection and unilateral visual neglect in patients with neurologic impairment. Neurology 1980, 30, 509–517. [Google Scholar] [CrossRef]
- Jannink, M.J.A.; Aznar, M.; de Kort, A.C.; van de Vis, W.; Veltink, P.; van der Kooij, H. Assessment of visuospatial neglect in stroke patients using virtual reality: A pilot study. Int. J. Rehabil. Res. 2009, 32, 280–286. [Google Scholar] [CrossRef]
- Peskine, A.; Rosso, C.; Galland, A.; Caron, E.; Canet, P.; Jouvent, R.; Pradat-Diehl, P. Virtual reality navigation and visuospatial neglect after stroke. Cerebrovasc. Dis. 2011, 31 (Suppl. 2), 193. [Google Scholar]
- Manuli, A.; Maggio, M.G.; Latella, D.; Cannavò, A.; Balletta, T.; De Luca, R.; Naro, A.; Calabrò, R.S. Can robotic gait rehabilitation plus Virtual Reality affect cognitive and behavioural outcomes in patients with chronic stroke? A randomized controlled trial involving three different protocols. J. Stroke Cerebrovasc. Dis. Off. J. Natl. Stroke Assoc. 2020, 29, 104994. [Google Scholar] [CrossRef] [PubMed]
- Lee, N.Y.; Lee, D.K.; Song, H.S. Effect of virtual reality dance exercise on the balance, activities of daily living, and depressive disorder status of Parkinson’s disease patients. J. Phys. Ther. Sci. 2015, 27, 145–147. [Google Scholar] [CrossRef] [Green Version]
- Liao, Y.Y.; Yang, Y.R.; Cheng, S.J.; Wu, Y.R.; Fuh, J.L.; Wang, R.Y. Virtual reality-based training to improve obstacle-crossing performance and dynamic balance in patients with Parkinson’s disease. Neurorehabilit. Neural Repair 2015, 29, 658–667. [Google Scholar] [CrossRef] [PubMed]
- Pedreira, G.; Prazeres, A.; Cruz, D.; Gomes, I.; Monteiro, L.; Melo, A. Virtual games and quality of life in Parkinson’s disease: A randomised controlled trial. Adv. Parkinson Dis. 2013, 2, 97–101. [Google Scholar] [CrossRef] [Green Version]
- Pompeu, J.E.; Mendes, F.A.; Silva, K.G.; Lobo, A.M.; Oliveira, T.; Zomignani, A.P.; Piemonte, M.E. Effect of Nintendo Wii™-based motor and cognitive training on activities of daily living in patients with Parkinson’s disease: A randomised clinical trial. Physiotherapy 2012, 98, 196–204. [Google Scholar] [CrossRef]
- Shen, X.; Mak, M.K.Y. Balance and gait training with augmented feedback improves balance confidence in people with Parkinson’s disease: A randomized controlled trial. Neurorehabilit. Neural Repair 2014, 28, 524–535. [Google Scholar] [CrossRef]
- van denHeuvel, M.R.C.; Kwakkel, G.; Beek, P.J.; Berendse, H.W.; Da’ertshofer, A.; vanWegen, E.E.H. Effects of augmented visual feedback during balance training in Parkinson’s disease: A pilot randomised clinical trial. Parkinsonism Relat. Disord. 2014, 20, 1352–1358. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.C.; Wang, H.K.; Wu, R.M.; Lo, C.S.; Lin, K.H. Home-based virtual reality balance training and conventional balance training in Parkinson’s disease: A randomised controlled trial. J. Formos. Med. Assoc. 2015, 20, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Yen, C.Y.; Lin, K.H.; Hu, M.H.; Wu, R.M.; Lu, T.W.; Lin, C.H. Effects of virtual reality-augmented balance training on sensory organization and attentional demand for postural control in people with Parkinson’s disease: A randomised controlled trial. Phys. Ther. 2011, 91, 862–874. [Google Scholar] [CrossRef] [Green Version]
- Santos, P.; Machado, T.; Santos, L.; Ribeiro, N.; Melo, A. Efficacy of the Nintendo Wii combination with Conventional Exercises in the rehabilitation of individuals with Parkinson’s disease: A randomized clinical trial. NeuroRehabilitation 2019, 45, 255–263. [Google Scholar] [CrossRef]
- Pazzaglia, C.; Imbimbo, I.; Tranchita, E.; Minganti, C.; Ricciardi, D.; Lo Monaco, R.; Parisi, A.; Padua, L. Comparison of virtual reality rehabilitation and conventional rehabilitation in Parkinson’s disease: A randomised controlled trial. Physiotherapy 2020, 106, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Cikajlo, I.; Peterlin Potisk, K. Advantages of using 3D virtual reality based training in persons with Parkinson’s disease: A parallel study. J. Neuroeng. Rehabil. 2019, 16, 119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arias, P.; Robles-Garćıa, V.; Sanmartìn, G.; Flores, J.; Cudeiro, J. Virtual reality as a tool for evaluation of repetitive rhythmic movements in the elderly and Parkinson’s disease patients. PLoS ONE 2012, 7, e30021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maggio, M.G.; De Cola, M.C.; Latella, D.; Maresca, G.; Finocchiaro, C.; La Rosa, G.; Cimino, V.; Sorbera, C.; Bramanti, P.; De Luca, R.; et al. What About the Role of Virtual Reality in Parkinson Disease’s Cognitive Rehabilitation? Preliminary Findings from a Randomized Clinical Trial. J. Geriatr. Psychiatry Neurol. 2018, 31, 312–318. [Google Scholar] [CrossRef] [PubMed]
- Calabrò, R.S.; Naro, A.; Cimino, V.; Buda, A.; Paladina, G.; Di Lorenzo, G.; Manuli, A.; Milardi, D.; Bramanti, P.; Bramanti, A. Improving motor performance in Parkinson’s disease: A preliminary study on the promising use of the computer assisted virtual reality environment (CAREN). Neurol. Sci. 2020, 41, 933–941. [Google Scholar] [CrossRef] [PubMed]
- Desjardins-Crépeau, L.; Berryman, N.; Fraser, S.A.; Vu, T.T.; Kergoat, M.J.; Li, K.Z.; Bosquet, L.; Bherer, L. ELects of combined physical and cognitive training on fitness and neuropsychological outcomes in healthy older adults. Clin. Interv. Aging 2016, 11, 1287–1299. [Google Scholar] [CrossRef] [Green Version]
- Klusmann, V.; Evers, A.; Schwarzer, R.; Schlattmann, P.; Reischies, F.M.; Heuser, I. Complex mental and physical activity in older women and cognitive performance: A 6-month randomized controlled trial. J. Gerontol. Ser. Abiological Sci. Med. Sci. 2010, 65, 680–688. [Google Scholar] [CrossRef] [Green Version]
- Lampit, A.; Hallock, H.; Moss, R.; Kwok, S.; Rosser, M.; Lukjanenko, M.; Kohn, A.; Naismith, S.; Brodaty, H.; Valenzuela, M. A dose-response relationship between computerized cognitive training and global cognition in older adults. In Proceedings of the 6th Conference Clinical Trials on Alzheimer’s Disease, San Diego, CA, USA, 14–16 November 2013; Volume 803–804. [Google Scholar]
- Legault, C.; Jennings, J.M.; Katula, J.A.; Dagenbach, D.; Gaussoin, S.A.; Sink, K.M.; Rapp, R.S.; Rejeski, W.J.; Shumaker, S.A.; Espeland, M.A. Designing clinical trials for assessing the eLects of cognitive training and physical activity interventions on cognitive outcomes: The Seniors Health and Activity Research Program Pilot (SHARP-P) study, a randomized controlled trial. BMC Geriatr. 2011, 11, 27. [Google Scholar] [CrossRef] [Green Version]
- Leung, N.T.; Tam, H.M.; Chu, L.W.; Kwok, T.C.; Chan, F.; Lam, L.C.; Woo, J.; Lee, T.M.C. Neural plastic eLects of cognitive training on aging brain. Neural Plast. 2015, 2015, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peretz, C.; Korczyn, A.D.; Shatil, E.; Aharonson, V.; Birnboim, S.; Giladi, N. Computer-based, personalized cognitive training versus classical computer games: A randomized double-blind prospective trial of cognitive stimulation. Neuroepidemiology 2011, 36, 91–99. [Google Scholar] [CrossRef]
- Shatil, E. Does combined cognitive training and physical activity training enhance cognitive abilities more than either alone? A four-condition randomized controlled trial among healthy older adults. Front. Aging Neurosci. 2013, 5, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van het Reve, E.; de Bruin, E.D. Strength-balance supplemented with computerized cognitive training to improve dual task gait and divided attention in older adults: A multicenter randomized-controlled trial. BMC Geriatr. 2014, 14, 134. [Google Scholar] [CrossRef] [Green Version]
- Strong, J. Immersive Virtual Reality and Persons with Dementia: A Literature Review. J. Gerontol. Soc. Work 2020, 63, 209–226. [Google Scholar] [CrossRef]
- D’Cunha, N.M.; Nguyen, D.; Naumovski, N.; McKune, A.J.; Kellett, J.; Georgousopoulou, E.N.; Frost, J.; Isbel, S. A Mini-Review of Virtual Reality-Based Interventions to Promote Well-Being for People Living with Dementia and Mild Cognitive Impairment. Gerontology 2019, 65, 430–440. [Google Scholar] [CrossRef]
- Hill, N.T.; Mowszowski, L.; Naismith, S.L.; Chadwick, V.L.; Valenzuela, M.; Lampit, A. Computerized Cognitive Training in Older Adults with Mild Cognitive Impairment or Dementia: A Systematic Review and Meta-Analysis. Am. J. Psychiatry 2017, 174, 329–340. [Google Scholar] [CrossRef]
- Bourrelier, J.; Ryard, J.; Dion, M.; Merienne, F.; Manckoundia, P.; Mourey, F. Use of a virtual environment to engage motor and postural abilities in elderly subjects with and without mild cognitive impairment (MAAMI Project). IRBM 2016, 37, 75–80. [Google Scholar] [CrossRef] [Green Version]
- Eisapour, M.; Cao, S.; Domenicucci, L.; Boger, J. Virtual reality exergames for people living with dementia based on exercise therapy best practices. Proc. Hum. Factors Erg. Soc. Annu. Meet. 2018, 62, 528–532. [Google Scholar] [CrossRef]
- Manera, V.; Chapoulie, E.; Bourgeois, J.; Guerchouche, R.; David, R.; Ondrej, J.; Drettakis, G.; Robert, P. A Feasibility Study with Image-Based Rendered Virtual Reality in Patients with Mild Cognitive Impairmentand Dementia. PLoS ONE 2016, 11, e0151487. [Google Scholar] [CrossRef] [Green Version]
- Mendez, M.F.; Joshi, A.; Jimenez, E. Virtual reality for the assessment of frontotemporal dementia, a feasibility study. Disabil. Rehabil. Assist. Technol. 2015, 10, 160–164. [Google Scholar] [CrossRef]
- Moyle, W.; Jones, C.; Dwan, T.; Petrovich, T. Effectiveness of a Virtual Reality Forest on People with Dementia: A Mixed Methods Pilot Study. Gerontologist 2018, 58, 478–487. [Google Scholar] [CrossRef] [Green Version]
- Optale, G.; Urgesi, C.; Busato, V.; Marin, S.; Piron, L.; Priftis, K.; Gamberini, L.; Capodieci, S.; Bordin, A. Controlling memory impairment in elderly adults using virtual reality memory training: A randomized controlled pilot study. Neurorehabil. Neural Repair. 2010, 24, 348–357. [Google Scholar] [CrossRef]
- Siriaraya, P.; Ang, C.S. Recreating living experiences from past memories through virtual worlds for people with dementia. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Toronto, ON, Canada, 26 April–1 May 2014; pp. 3977–3986. [Google Scholar]
- Aruanno, B.; Garzotto, F.; Covarrubias Rodriguez, M. HoloLens-based Mixed Reality Experiences for Subjects with Alzheimer’s Disease. CHItaly ‘17. In Proceedings of the 12th Biannual Conference on Italian SIGCHI Chapter, Lecco, Italy, 12–18 September 2017; Article No. 15. pp. 1–9. [Google Scholar]
- Hofmann, M.; Rösler, A.; Schwarz, W.; Müller-Spahn, F.; Kräuchi, K.; Hock, C.; Seifritz, E. Interactive computer-training as a therapeutic tool in Alzheimer’s disease. Compr. Psychiatry. 2003, 44, 213–219. [Google Scholar] [CrossRef]
- Man, D.W.; Chung, J.C.; Lee, G.Y. Evaluation of a virtual reality-based memory training programme for Hong Kong Chinese older adults with questionable dementia: A pilot study. Int. J. Geriatr. Psychiatry 2012, 27, 513–520. [Google Scholar] [CrossRef] [PubMed]
- Chapoulie, E.; Guerchouche, R.; Petit, P.; Chaurasia, G.; Robert, P.; Drettakis, G. Reminiscence therapy using image-based rendering in VR. In Proceedings of the IEEE Virtual Reality Conference, Minneapolis, MN, USA, 29 March–2 April 2014. [Google Scholar]
- Karssemeijer, E.; Bossers, W.; Aaronson, J.A.; Sanders, L.; Kessels, R.; Olde Rikkert, M. Exergaming as a Physical Exercise Strategy Reduces Frailty in People with Dementia: A Randomized Controlled Trial. J. Am. Med. Dir. Assoc. 2019, 20, 1502–1508. [Google Scholar] [CrossRef]
- Montenegro, J.M.F.; Argyriou, V. Cognitive evaluation for the diagnosis of Alzheimer’s disease based on Turing Test and virtual environments. Physiol. Behav. 2017, 173, 42–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zakzanis, K.K.; Quintin, G.; Graham, S.J.; Mraz, R. Age and dementia related differences in spatial navigation within an immersive virtual environment. Med. Sci. Monit. 2009, 15, 140–150. [Google Scholar]
- Ruet, A.; Brochet, B. Cognitive assessment in patients with multiple sclerosis: From neuropsychological batteries to ecological tools. Ann. Phys. Rehabil. Med. 2018, 63, 154–158. [Google Scholar] [CrossRef]
- Jonsdottir, J.; Gervasoni, E.; Bowman, T.; Bertoni, R.; Tavazzi, E.; Rovaris, M.; Cattaneo, D. Intensive Multimodal Training to Improve Gait Resistance, Mobility, Balance and Cognitive Function in Persons with Multiple Sclerosis: A Pilot Randomized Controlled Trial. Front. Neurol. 2018, 9, 800. [Google Scholar] [CrossRef] [PubMed]
- Jonsdottir, J.; Bertoni, R.; Lawo, M.; Montesano, A.; Bowman, T.; Gabrielli, S. Serious games for arm rehabilitation of persons with multiple sclerosis. A randomized controlled pilot study. Mult. Scler. Relat. Disord. 2017, 19, 25–29. [Google Scholar] [CrossRef] [Green Version]
- Taylor, M.; Griffin, M. The use of gaming technology for rehabilitation in people with multiple sclerosis. Mult. Scler. 2014, 21, 355–371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maggio, M.G.; Russo, M.; Cuzzola, M.F.; Destro, M.; La Rosa, G.; Molonia, F.; Bramanti, P.; Lombardo, G.; De Luca, R.; Calabrò, R.S. Virtual reality in multiple sclerosis rehabilitation: A review on cognitive and motor outcomes. J. Clin. Neurosci. 2019, 65, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Russo, M.; Dattola, V.; De Cola, M.C.; Logiudice, A.L.; Porcari, B.; Cannavò, A.; Sciarrone, F.; De Luca, R.; Molonia, F.; Sessa, E.; et al. The role of robotic gait training coupled with virtual reality in boosting the rehabilitative outcomes in patients with multiple sclerosis. Int. J. Rehabil. Res. 2018, 41, 166–172. [Google Scholar] [CrossRef]
- Stratton, M.E.; Pilutti, L.A.; Crowell, J.A.; Kaczmarski, H.; Motl, R.W. Virtual street-crossing performance in persons with multiple sclerosis: Feasibility and task performance characteristics. Traffic Inj. Prev. 2017, 18, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.; Fazakarley, L.; Thomas, P.W.; Brenton, S.; Collyer, S.; Perring, S.; Scott, R.; Galvin, K.; Hillier, C. Testing the feasibility and acceptability of using the Nintendo Wii in the home to increase activity levels, vitality and well-being in people with multiple sclerosis (Mii-vitaliSe): Protocol for a pilot randomised controlled study. BMJ Open 2014, 4, e005172. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.; Fazakarley, L.; Thomas, P.W.; Collyer, S.; Brenton, S.; Perring, S.; Scott, R.; Thomas, F.; Thomas, C.; Jones, K.; et al. Mii-vitaliSe: A pilot randomized controlled trial of a home gaming system (Nintendo Wii) to increase activity levels, vitality and well-being in people with multiple sclerosis. BMJ Open 2017, 7, e016966. [Google Scholar] [CrossRef]
- Calabrò, R.S.; Russo, M.; Naro, A.; De Luca, R.; Leo, A.; Tomasello, P.; Molonia, F.; Dattola, V.; Bramanti, A.; Bramanti, P. Robotic gait training in multiple sclerosis rehabilitation: Can virtual reality make the difference? Findings from a randomized controlled trial. J. Neurol. Sci. 2017, 377, 25–30. [Google Scholar] [CrossRef]
- Behrendt, F.; Schuster-Amft, C. Using an interactive virtual environment to integrate a digital Action Research Arm Test, motor imagery and action observation to assess and improve upper limb motor function in patients with neuromuscular impairments: A usability and feasibility study protocol. BMJ Open 2018, 8, e019646. [Google Scholar]
- Brichetto, G.; Spallarossa, P.; De Carvalho, M.L.L.; Battaglia, M.A. The effect of Nintendo on balance in people with multiple sclerosis: A pilot randomized control study. Mult. Scler. 2013, 19, 1219–1221. [Google Scholar] [CrossRef]
- Eftekharsadat, B.; Babaei-Ghazani, A.; Mohammadzadeh, M.; Talebi, M.; Eslamian, F.; Azari, E. Effect of virtual reality-based balance training in multiple sclerosis. Neurol. Res. 2015, 37, 539–544. [Google Scholar] [CrossRef]
- Gutiérrez, R.O.; Del Río, F.G.; De La Cuerda, R.C.; Alguacil-Diego, I.M.; González, R.A.; Page, J.C.M. A telerehabilitation program by virtual reality-video games improves balance and postural control in multiple sclerosis patients. NeuroRehabilitation 2013, 33, 545–554. [Google Scholar] [CrossRef]
- Kalron, A.; Fonkatz, I.; Frid, L.; Baransi, H.; Achiron, A. The effect of balance training on postural control in people with multiple sclerosis using the CAREN virtual reality system: A pilot randomized controlled trial. J. Neuroeng. Rehab. 2016, 13, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kramer, A.; Dettmers, C.; Gruber, M. Exergaming with additional postural demands improves balance and gait in patients with multiple sclerosis as much as conventional balance training and leads to high adherence to homebased balance training. Arch. Phys. Med. Rehabil. 2014, 95, 1803–1809. [Google Scholar] [CrossRef]
- Robinson, J.; Dixon, J.; Macsween, A.; Martin, D. The effects of exergaming on balance, gait, technology acceptance and flow experience in people with multiple sclerosis: A randomized controlled trial. BMC Sports Sci. Med. Rehabil. 2015, 7, 8. [Google Scholar] [CrossRef] [Green Version]
- Leocani, L.; Comi, E.; Annovazzi, P.; Rossi, P.; Rovaris, M.; Cursi, M.; Comola, M.; Martinelli, V.; Comi, G. Impaired short-term motor learning in multiple sclerosis:evidence from virtual reality. Neurorehabil. Neural Repair 2007, 21, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Peruzzi, A.; Cereatti, A.; Della Croce, U.; Mirelman, A. Effects of a virtual reality and treadmill training on gait of subjects with multiple sclerosis: A pilot study. Mult. Scler. Relat. Disord. 2016, 5, 91–96. [Google Scholar] [CrossRef]
- Lamargue-Hamel, D.; Deloire, M.; Saubusse, A.; Ruet, A.; Taillard, J.; Philip, P.; Brochet, B. Cognitive evaluation by tasks in a virtual reality environment in multiple sclerosis. J. Neurol. Sci. 2015, 359, 94–99. [Google Scholar] [CrossRef]
- Maggio, M.G.; De Luca, R.; Manuli, A.; Buda, A.; Foti Cuzzola, M.; Leonardi, S.; D’Aleo, G.; Bramanti, P.; Russo, M.; Calabrò, R.S. Do patients with multiple sclerosis benefit from semi-immersive virtual reality? A randomized clinical trial on cognitive and motor outcomes. Appl. Neuropsy. Chol. Adult 2020, 1–7. [Google Scholar] [CrossRef]
- Ozkul, A.; Guclu-Gunduz, A.; Yazici, G.; Atalay, N.; Irkec, G.C. Effect of immersive virtual reality on balance, mobility, and fatigue in patients with multiple sclerosis: A single-blinded randomized controlled trial. European Journal of Integrative Medicine Volume 2020, 35, 101092. [Google Scholar] [CrossRef]
- Saldana, D.; Neureither, M.; Schmiesing, A.; Jahng, E.; Kysh, L.; Roll, S.C.; Liew, S.L. Applications of Head-Mounted Displays for Virtual Reality in Adult Physical Rehabilitation: A Scoping Review. Am. J. Occup. Ther. 2020, 74, 7405205060p1–7405205060p15. [Google Scholar] [CrossRef]
- Mekbib, D.B.; Han, J.; Zhang, L.; Fang, S.; Jiang, H.; Zhu, J.; Roe, A.W.; Xu, D. Virtual reality therapy for upper limb rehabilitation in patients with stroke: A meta-analysis of randomized clinical trials. Brain Injury 2020, 34, 456–465. [Google Scholar] [CrossRef] [PubMed]
- Molhemi, F.; Monjezi, S.; Mehravar, M.; Shaterzadeh-Yazdi, M.J.; Salehi, R.; Hesam, S.; Mohammadianinejad, E. Effects of Virtual Reality vs Conventional Balance Training on Balance and Falls in People with Multiple Sclerosis: A Randomized Controlled Trial. Arch. Phys. Med. Rehabil. 2021, 102, 290–299. [Google Scholar] [CrossRef] [PubMed]
- Cuesta-Gómez, A.; Sánchez-Herrera-Baeza, P.; Oña-Simbaña, E.D.; Martínez-Medina, A.; Ortiz-Comino, C.; Balaguer-Bernaldo-de-Quirós, C.; Jardón-Huete, A.; Cano-de-la-Cuerda, R. Effects of virtual reality associated with serious games for upper limb rehabilitation inpatients with multiple sclerosis: Randomized controlled trial. J. Neuroeng. Rehabil. 2020, 17, 90. [Google Scholar] [CrossRef] [PubMed]
- Waliño-Paniagua, C.N.; Gómez-Calero, C.; Jiménez-Trujillo, M.I.; Aguirre-Tejedor, L.; Bermejo-Franco, A.; Ortiz-Gutiérrez, R.M.; Cano-de-la-Cuerda, R. Effects of a Game-Based Virtual Reality Video Capture Training Program Plus Occupational Therapy on Manual Dexterity in Patients with Multiple Sclerosis: A Randomized Controlled Trial. J. Healthc. Eng. 2019, 2019, 9780587. [Google Scholar] [CrossRef] [Green Version]
- Rosenfield, M. Computer vision syndrome: A review of ocular causes and potential treatments. Ophthalmic Physiol. Opt. 2011, 31, 502–515. [Google Scholar] [CrossRef]
- Kesztyues, T.I.; Mehlitz, M.; Schilken, E.; Weniger, G.; Wolf, S.; Piccolo, U.; Irle, E.; Rienhoff, O. Preclinical Evaluation of a Virtual Reality Neuropsycho-logical Test System: Occurrence of Side Effects. Cyberpsychol. Behav. 2000, 3, 343–349. [Google Scholar] [CrossRef]
- Smits, M.; Staal, J.B.; van Goor, H. Could Virtual Reality play a role in the rehabilitation after COVID-19 infection? BMJ Open Sport Exerc. Med. 2020, 6, e000943. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naro, A.; Calabrò, R.S. What Do We Know about The Use of Virtual Reality in the Rehabilitation Field? A Brief Overview. Electronics 2021, 10, 1042. https://doi.org/10.3390/electronics10091042
Naro A, Calabrò RS. What Do We Know about The Use of Virtual Reality in the Rehabilitation Field? A Brief Overview. Electronics. 2021; 10(9):1042. https://doi.org/10.3390/electronics10091042
Chicago/Turabian StyleNaro, Antonino, and Rocco Salvatore Calabrò. 2021. "What Do We Know about The Use of Virtual Reality in the Rehabilitation Field? A Brief Overview" Electronics 10, no. 9: 1042. https://doi.org/10.3390/electronics10091042
APA StyleNaro, A., & Calabrò, R. S. (2021). What Do We Know about The Use of Virtual Reality in the Rehabilitation Field? A Brief Overview. Electronics, 10(9), 1042. https://doi.org/10.3390/electronics10091042