DC Current Limiting Operation and Power Burden Characteristics of a Flux-Coupling Type SFCL Connected in Series between Two Windings
Abstract
:1. Introduction
2. Experimental Methods
2.1. Operational Principle and Equivalent Circuit Analysis
2.2. Experimental Design and Methods
3. Experimental Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hafner, J.; Jacobson, B. Proactive hybrid HVDC breakers: A key innovation for reliable HVDC grids. In Proceedings of the CIGRE the Electric Power System of the Future: Integrating Supergrids and Microgrids International Symposium, Bologna, Italy, 13–15 September 2011; pp. B4–B264. [Google Scholar]
- Dordizadeh, P.; Gharghabi, P.; Niayesh, K. Dynamic analysis of a fast-acting circuit breaker (Thompson) drive mechanism. J. Korean Phys. Soc. 2011, 59, 3547–3554. [Google Scholar] [CrossRef]
- Kim, W.S.; Hyun, O.b.; Park, C.R.; Yim, S.W.; Yu, S.D.; Yang, S.E.; Kim, H.S.; Kim, H.R. Dynamic characteristics of a 22.9 kV hybrid SFCL for short-circuit test considering a simple coordination of protection system in distribution networks. IEEE Trans. on Appl. Supercond. 2012, 22, 5601404. [Google Scholar]
- Xiang, B.; Luo, J.; Gao, L.; Liu, Z.; Geng, Y.; Wang, J.; Yanabu, S. Study on the parameter requirements for resistive-type superconducting fault current limiters combined with mechanical DC circuit breakers in hybrid AC/DC transmission grids. IEEE Trans. Power Deliv. 2020, 35, 2865–2875. [Google Scholar] [CrossRef]
- Pham, V.D.; Laumoud, Y.; Verhaege, T.; Fevrier, A.; Collet, M.; Bekhaled, M. Towards the superconducting fault current limiter. IEEE Trans. on Appl. Supercond. 1991, 6, 801–808. [Google Scholar]
- Ye, L.; Lin, L.Z.; Juengst, K.P. Application studies of superconducting fault current limiters in electric power systems. IEEE Trans. Appl. Supercond. 2002, 12, 900–903. [Google Scholar]
- Jiang, Z.; Wang, Y.; Dai, S.; Ma, T.; Yuan, X.; Liu, M.; Chen, H.; Wang, M.; Peng, C. Application and design of resistive SFCL in ±160 kV MMC-HV dc system. IEEE Trans. Appl. Supercond. 2019, 29, 5603505. [Google Scholar] [CrossRef]
- Sun, J.; Du, J.; Li, Y.; Mo, S.; Cai, Y.; Yuan, W.; Ma, T. Design and performance test of a 20-kV DC superconducting fault current limiter. IEEE Trans. Appl. Supercond. 2020, 30, 5600305. [Google Scholar] [CrossRef]
- Lee, H.Y. A Study on Fault Protection Scheme Using Fault Current Limiter and Circuit Breaker Considering Fault Current Characteristics of Voltage Source Converter HVDC System. Ph.D. Thesis, Hanyang Unversity, Seoul, Korea, 2020; pp. 1–172. [Google Scholar]
- Franck, C.M. HVDC circuit breakers: A review identifying future research needs. IEEE Trans. Power Deliv. 2011, 26, 998–1007. [Google Scholar] [CrossRef] [Green Version]
- Flourentzou, N.; Agelidis, V.G.; Demetriades, G.D. VSC-based HVDC power transmission systems: An overview. IEEE Trans. Power Electron. 2009, 24, 592–602. [Google Scholar] [CrossRef]
- Bucher, M.K.; Franck, C.M. Contribution of fault current sources in multi-terminal HVDC cable networks. IEEE Trans. Power Deliv. 2013, 28, 1796–1803. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Ren, Y.; Shi, Z.; Yang, X.; Chen, W. Novel hybrid DC circuit breaker based on series connection of thyristors and IGBT half-bridge submodules. IEEE Trans. Power Electron. 2021, 36, 1506–1518. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, X.; Sheng, J.; Cai, L.; Jin, Z.; Gu, J.; An, Z.; Yang, X.; Hong, Z. Design and application of a superconducting fault current limiter in DC systems. IEEE Trans. Appl. Superconduct. 2014, 24, 5601305. [Google Scholar] [CrossRef]
- Chen, L.; Li, G.; He, H.; Chen, H.; Li, Y.; Ding, M.; Zhang, X.; Xu, Y.; Ren, L.; Tang, Y. Study on coordination of resistive SFCLs and hybrid-type circuit breakers to protect a HVDC system with LCC and VSC stations. IEEE Trans. Appl. Supercond. 2020, 30, 5600806. [Google Scholar] [CrossRef]
- Manohar, P.; Ahmed, W. Superconducting fault current limiter to mitigate the effect of DC line fault in VSC-HVDC system. In Proceedings of the International Conference on Power, Signals, Controls and Computation, Thrissur, India, 3–6 January 2012; pp. 1–6. [Google Scholar]
- Endo, M.; Hori, T.; Koyama, T.; Kaiho, K.; Yamaguchi, I.; Arai, K.; Mizoguchi, H.; Yanabu, S. Development of a superconducting fault current limiter using various high-speed circuit breakers. IET Electr. Power Appl. 2009, 3, 363–370. [Google Scholar] [CrossRef]
- Wei, Z.; Xin, Y.; Hong, W.; Yang, C.; Lan, J.; Li, Q. A new type of DC superconducting fault current limiter. IEEE Trans. Appl. Supercond. 2019, 29, 5602905. [Google Scholar] [CrossRef]
- Ko, S.C.; Lim, S.H.; Han, T.H. Analysis on fault current limiting and recovery characteristics of a flux-lock type SFCL with an isolated transformer. Physica C 2012, 484, 263–266. [Google Scholar] [CrossRef]
- Lim, S.H.; Ko, S.C.; Han, T.H. Analysis on current limiting characteristics of a transformer type SFCL with two triggering current levels. Physica C 2012, 484, 253–257. [Google Scholar] [CrossRef]
- Lim, S.H.; Kim, Y.P.; Ko, S.C. Effect of peak current limiting in series-connection SFCL with two magnetically coupled circuits using E-I core. IEEE Trans. Appl. Supercond. 2016, 26, 5600404. [Google Scholar] [CrossRef]
- Lim, S.H.; Ko, S.C. Comparison of peak current limiting in two magnetically coupled SFCLs using dual iron cores. IEEE Trans. Appl. Supercond. 2016, 26, 5600304. [Google Scholar] [CrossRef]
- Ko, S.C.; Han, T.H.; Lim, S.H. Analysis on current limiting characteristics according to the Influence of the magnetic flux for SFCL with two magnetic paths. J. Electr. Eng. Technol. 2014, 9, 1909–1913. [Google Scholar] [CrossRef]
- Ko, S.C.; Han, T.H.; Lim, S.H. Current-limiting and recovery characteristics of a flux-lock-type SFCL with two adjustable operational currents. J. Korean Phys. Soc. 2014, 65, 253–256. [Google Scholar] [CrossRef]
- Han, T.H.; Ko, S.C.; Lee, B.J.; Lim, S.H. Study on current limiting characteristics of a flux-lock type SFCL using series connected two coils with twice triggering operation. J. Electr. Eng. Technol. 2014, 9, 777–781. [Google Scholar] [CrossRef] [Green Version]
- Yan, S.; Ren, L.; Zhang, Y.; Zhu, K.; Su, R.; Xu, Y.; Tang, Y.; Shi, J.; Li, J. AC loss analysis of a flux-coupling type superconducting fault current limiter. IEEE Trans. Appl. Supercond. 2019, 29, 5603205. [Google Scholar] [CrossRef]
- Ko, S.C.; Han, T.H.; Lim, S.H. Magnetization and power losses characteristics due to variation in the number of windings of a bridge type SFCL with double HTSC elements. IEEE Trans. Appl. Supercond. 2021, 31, 5600505. [Google Scholar]
- Qiu, Q.; Xiao, L.; Zhang, Z.; Jing, L.; Liu, Q.; Zhang, G.; Xia, D. Design and test of 10kV/400A flux-coupling–type superconducting fault current limiting module. IEEE Trans. Appl. Supercond. 2018, 28, 5601806. [Google Scholar] [CrossRef]
- Li, Z.; Liang, S.; Ren, L.; Tan, X.; Xu, Y.; Tang, Y.; Li, J.; Shi, J. Application of flux-coupling-type superconducting fault current limiter on shipboard MVDC integrated power systems. IEEE Trans. Appl. Supercond. 2020, 30, 5601908. [Google Scholar] [CrossRef]
- Shu, J.; Wang, S.; Liu, T.; Jiao, N.; Wang, Y. A novel current-limiting circuit based on resistive-type SFCL for fault in DC power system. Microelectron. Reliab. 2018, 88–89, 1201–1205. [Google Scholar] [CrossRef]
- Lee, J.G.; Khan, U.A.; Hwang, J.S.; Seong, J.K.; Shin, W.J.; Park, B.B.; Lee, B.W. Assessment on the influence of resistive superconducting fault current limiter in VSC-HVDC system. Phys. C 2014, 504, 163–166. [Google Scholar] [CrossRef]
- Qiu, Q.; Xiao, L.; Zhang, J.; Zhang, Z.; Song, N.; Jing, L.; Zha, W.; Du, X.; Teng, Y.; Zhou, Z.; et al. Design and test of 40-kV/2-kA DC superconducting fault current limiter. IEEE Trans. Appl. Supercond. 2020, 30, 5602305. [Google Scholar] [CrossRef]
- Aly, M.M.; Mohamed, E.A. Comparison between resistive and inductive superconducting fault current limiters for fault current limiting. In Proceedings of the 2012 Seventh International Conference on Computer Engineering & Systems (ICCES), Cairo, Egypt, 27–29 November 2012; pp. 227–232. [Google Scholar]
- Ren, L.; Tang, Y.; Li, Z.; Chen, L.; Shi, J.; Jiao, F.; Li, J. Techno-economic evaluation of a novel flux-coupling type superconducting fault current limiter. IEEE Trans. Appl. Supercond. 2010, 20, 1242–1245. [Google Scholar] [CrossRef]
- Na, J.B.; Kim, Y.J.; Jang, J.Y.; Ruy, K.S.; Hwang, Y.J.; Choi, S.; Ko, T.K. Design and tests of prototype hybrid superconducting fault current limiter with fast switch. IEEE Trans. Appl. Supercond. 2012, 22, 5602604. [Google Scholar]
- Chen, L.; Chen, H.; Shu, Z.; Zhang, G.; Xia, T.; Ren, L. Comparison of inductive and resistive SFCL to robustness improvement of a VSC-HVDC system with wind plants against dc fault. IEEE Trans. Appl. Supercond. 2016, 26, 5603508. [Google Scholar] [CrossRef]
- Li, B.; Jing, F.; Jia, J.F.; Li, B. Research on saturated iron-core superconductive fault current limiters applied in VSC-HVDC systems. IEEE Trans. Appl. Supercond. 2016, 26, 5603805. [Google Scholar] [CrossRef]
- Garcia, W.L.; Tixador, P.; Raison, B.; Bertinato, A.; Luscan, B.; Creusot, C. Technical and economic analysis of the r-type SFCL for HVDC grids protection. IEEE Trans. Appl. Supercond. 2017, 27, 5602009. [Google Scholar]
- Xi, J.; Pei, X.; Song, W.; Xiang, B.; Liu, Z.; Zeng, X. Experimental tests of DC SFCL under low impedance and high impedance fault conditions. IEEE Trans. Appl. Supercond. 2021, 31, 5601205. [Google Scholar]
- Deng, C.; Zheng, F.; Chen, L.; Li, M.; Xia, P.; Li, S.; Long, Z.; Zhu, L.; Guo, F. Study of a modified flux-coupling-type superconducting fault current limiter for mitigating the effect of DC short circuit in a VSC-HVDC system. J. Supercond. Nov. Magn. 2015, 28, 1525–1534. [Google Scholar] [CrossRef]
- Liang, S.; Tang, Y.; Xia, Z.; Ren, L.; Chen, L.; Xu, Y.; Wang, Z.; Yan, S. Study on the current limiting performance of a novel SFCL in DC systems. IEEE Trans. Appl. Supercond. 2017, 27, 5601106. [Google Scholar] [CrossRef]
- Yang, J.; Fletcher, J.E.; O’Reilly, J. Short-circuit and ground fault analyses and location in VSC-based DC network cables. IEEE Trans. Ind. Electron. 2012, 59, 3827–3837. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; He, J. Studies on the application of R-SFCL in the VSC-based DC distribution system. IEEE Trans. Appl. Supercond. 2016, 26, 5601005. [Google Scholar] [CrossRef]
- Li, B.; Wang, C.; Hong, W.; Yang, S.; Xin, Y. Modeling of the DC inductive superconducting fault current limiter. IEEE Trans. Appl. Supercond. 2020, 30, 5601105. [Google Scholar] [CrossRef]
- Kim, H.R.; Choi, H.S.; Lim, H.R.; Kim, I.S.; Hyun, O.B. Initial quench development in uniform Au/Y-Ba-Cu-O thin films. IEEE Trans. Appl. Supercond. 2001, 11, 2414–2417. [Google Scholar]
- Choi, H.S.; Hyun, O.B.; Kim, H.R.; Park, K.B. Switching properties of a hybrid type superconducting fault current limiter using YBCO stripes. IEEE Trans. Appl. Supercond. 2002, 14, 1833–1838. [Google Scholar] [CrossRef]
- Kim, Y.P.; Ko, S.C. DC current limiting characteristics of flux-coupled type SFCL using superconducting element connected in parallel in a DC system. Energies 2021, 14, 1096. [Google Scholar] [CrossRef]
Specification | Value | Unit | |
---|---|---|---|
Power supply | AC voltage (Eab) | 80 | Vrms |
DC voltage (Udc) | 117 | Vdc | |
Filter capacitor | Capacitor (C) | 10,200 | μF |
Line impedance | Line resistor (Rline) Line inductance (Lline) | 0.42 0.18 | Ω mH |
Load | Load resistor (RL) | 10 | Ω |
Fault fire | Fault resistor (Rf) | 1.5 | Ω |
Inductance of two coils | Inductance 1 (L1) Inductance 2 (L2) | 60.9 1.3 | mH mH |
Superconducting element (SE) | Material Critical temperature (Tc) Critical Current (Ic) | YBCO 87 27 | Thin film K A |
Recovery Time | Additive winding | 24.5 | ms |
Subtractive winding | 24.5 | ms |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ko, S.-C.; Han, T.-H.; Lim, S.-H. DC Current Limiting Operation and Power Burden Characteristics of a Flux-Coupling Type SFCL Connected in Series between Two Windings. Electronics 2021, 10, 1087. https://doi.org/10.3390/electronics10091087
Ko S-C, Han T-H, Lim S-H. DC Current Limiting Operation and Power Burden Characteristics of a Flux-Coupling Type SFCL Connected in Series between Two Windings. Electronics. 2021; 10(9):1087. https://doi.org/10.3390/electronics10091087
Chicago/Turabian StyleKo, Seok-Cheol, Tae-Hee Han, and Sung-Hun Lim. 2021. "DC Current Limiting Operation and Power Burden Characteristics of a Flux-Coupling Type SFCL Connected in Series between Two Windings" Electronics 10, no. 9: 1087. https://doi.org/10.3390/electronics10091087
APA StyleKo, S. -C., Han, T. -H., & Lim, S. -H. (2021). DC Current Limiting Operation and Power Burden Characteristics of a Flux-Coupling Type SFCL Connected in Series between Two Windings. Electronics, 10(9), 1087. https://doi.org/10.3390/electronics10091087