Deep Learning Neural Network Algorithm for Computation of SPICE Transient Simulation of Nonlinear Time Dependent Circuits
Abstract
:1. Introduction
2. SPICE Simulation Process
Algorithm 1 Setting New Integration Step |
Compute if ( then reject recompute for else accept end if |
3. Neural Network Step Estimator Algorithm
4. Training of Neural Network Step Estimator Algorithm
5. Implementation
Algorithm 2 Transient Simulation with NNSE |
Modified Nodal Analysis Initial Matrix Composition Pivoting, Reordering Classification for NN for Timeline do Linear system (LU Factorization) repeat {Nonlinear system (Newton-Raphson) } repeat {NI (GEAR/Trapez) } NN Estimation of Next Integration Step Residual (vector norm) until Stopping criteria until Stopping criteria if not (Convergence) then return Convergence problem end if Optional Pivoting and Reordering end for |
6. Simulated Circuits
6.1. Multiplier
Algorithm 3 Model and Analysis Parameters of Multiplier |
.MODEL MN NMOS LEVEL = 3 UO = 460.5 TOX = 1.0 +TPG = 1 VTO = 0.62 JS = 1.08 XJ = 0.15U +RS = 417 RSH = 2.73 LD = 0.04U VMAX = 130 +NSUB = 1.71 PB = 0.761 ETA = 0.00 THETA = 0.129 +PHI = 0.905 GAMMA = 0.69 KAPPA = 0.10 CJ = 76.4 +MJ = 0.357 CJSW = 5.68 MJSW = 0.302 +CGSO = 1.38 CGDO = 1.38 CGBO = 3.45 +KF = 3.07 AF = 1 .MODEL MP PMOS LEVEL = 3 UO = 100 TOX = 1.0 +TPG = 1 VTO = −0.58 JS = 0.38 XJ = 0.10U RS = 886 +RSH = 1.81 LD = 0.03U VMAX = 113 NSUB = 2.08 +PB = 0.911 ETA = 0.00 THETA = 0.120 PHI = 0.905 +GAMMA = 0.76 KAPPA = 2 CJ = 85 MJ = 0.429 +CJSW = 4.67 MJSW = 0.631 CGSO = 1.38 +KF = 1.08 AF = 1 CGDO = 1.38 CGBO = 3.45 +KF = 1.08 AF = 1 .TRAN 100P 40N 0 20P |
6.2. CMOS VCO
Algorithm 4 Model Parameters of CMOS VCO |
.MODEL CMOSN NMOS LEVEL = 3 PHI = 0.600000 TOX = 2.1200 XJ = 0.200000U +TPG = 1 VTO = 0.7860 DELTA = 6.9670 LD = 1.6470 KP = 9.6379 +UO = 591.7 THETA = 8.1220 RSH = 8.5450 GAMMA = 0.5863 +NSUB = 2.7470 NFS = 1.98 VMAX = 1.7330 ETA = 4.3680 +KAPPA = 1.3960 CGDO = 4.0241 CGSO = 4.0241 +CGBO = 3.6144 CJ = 3.8541 MJ = 1.1854 CJSW = 1.3940 +MJSW = 0.125195 PB = 0.800000 .MODEL CMOSP PMOS LEVEL = 3 PHI = 0.600000 TOX = 2.1200 XJ = 0.200000U +TPG = −1 VTO = −0.9056 DELTA = 1.5200 LD = 2.2000 KP = 2.9352 +UO = 180.2 THETA = 1.2480 RSH = 1.0470 GAMMA = 0.4863 +NSUB = 1.8900 NFS = 3.46 VMAX = 3.7320 ETA = 1.6410 +KAPPA = 9.6940 CGDO = 5.3752 CGSO = 5.3752 +CGBO = 3.3650 CJ = 4.8447 MJ = 0.5027 CJSW = 1.6457 +MJSW = 0.217168 PB = 0.850000 |
6.3. JFET Amplifier
Algorithm 5 Full Definition of JFET Amplifier |
V 1 1 0 DC 0 V2 2 0 DC 0 J1 2 1 0 J2N3819 .model J2N3819 NJF(Beta = 1.304 m Rd = 1 Rs = 1 Lambda = 2.25 m Vto = −3 + Is = 33.57f Cgd = 1.6p Pb = 1 Fc = .5 Cgs = 2.414p Kf = 9.882 Af = 1) |
6.4. Ring Oscillator
6.5. MOS Amplifier
Algorithm 6 Analysis and Model Parameters of MOS Amplifier |
.OPTIONS ABSTOL = 10n VNTOL = 10n NOACCTO .TRAN 0.1us 10us .MODEL m NMOS NSUB = 2.2 UO = 575 UCRIT = 49k +UEXP = 0.1 TOX = 0.11u XJ = 2.95u LEVEL = 2 +LEVEL = 2 CGSO = 1.5n CGDO = 1.5n CBD = 4.5f +CBS = 4.5f LD = 2.4485u NSS = 3.2 +KP = 2 PHI = 0.6 |
7. Results
8. Computational Setup
9. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Levin, A.; Lischinski, D.; Weiss, Y. Colorization using optimization. In ACM SIGGRAPH 2004 Papers; ACM: New York, NY, USA, 2004; pp. 689–694. [Google Scholar]
- Wu, Z.; Watts, O.; King, S. Merlin: An Open Source Neural Network Speech Synthesis System. In Proceedings of the 9th ISCA Workshop on Speech Synthesis Workshop (SSW 9), Sunnyvale, CA, USA, 13–15 September 2016; pp. 202–207. [Google Scholar]
- Mukalov, P.; Zelinskyi, O.; Levkovych, R.; Tarnavskyi, P.; Pylyp, A.; Shakhovska, N. Development of System for Auto-Tagging Articles, Based on Neural Network. 2019. Available online: http://ceur-ws.org/Vol-2362/paper10.pdf (accessed on 25 November 2021).
- Nguyen, X.A.; Ljuhar, D.; Pacilli, M.; Nataraja, R.M.; Chauhan, S. Surgical skill levels: Classification and analysis using deep neural network model and motion signals. Comput. Methods Programs Biomed. 2019, 177, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Vladimirescu, A. SPICE-the third decade. In Proceedings of the Bipolar Circuits and Technology Meeting, Minneapolis, MN, USA, 17–18 September 1990. [Google Scholar] [CrossRef]
- Zhe-Zhao, Z.; Yao-Nan, W.; Hui, W. Numerical integration based on a neural network algorithm. Comput. Sci. Eng. 2006, 8, 42–48. [Google Scholar] [CrossRef]
- Uddin, M.; Ullah, M. A Modified Predictor-Corrector Formula For Solving Ordinary Differential Equation Of First Order and First Degree. IOSR J. Math. 2013, 5, 21–26. [Google Scholar] [CrossRef]
- Tripodi, E.; Musolino, A.; Rizzo, R.; Raugi, M. A new predictor–corrector approach for the numerical integration of coupled electromechanical equations. Int. J. Numer. Methods Eng. 2016, 105, 261–285. [Google Scholar] [CrossRef]
- Acary, V.; Bonnefon, O.; Brogliato, B. Time-Stepping Numerical Simulation of Switched Circuits Within the Nonsmooth Dynamical Systems Approach. Comput.-Aided Des. Integr. Circuits Syst. 2010, 29, 1042–1055. [Google Scholar] [CrossRef]
- Ferreira, D.; Oliveira, J.; Pedro, J. A Novel Time-Domain CAD Technique Based on Automatic Time-Slot Division for the Numerical Simulation of Highly Nonlinear RF Circuits. Microw. Theory Tech. 2014, 62, 18–27. [Google Scholar] [CrossRef]
- Ding, Z.; Li, L.; Hu, Y. A modified precise integration method for transient dynamic analysis in structural systems with multiple damping models. Mech. Syst. Signal Process. 2018, 98, 613–633. [Google Scholar] [CrossRef]
- Nenzi, P.; Vogt, H. Ngspice Users Manual Version 23. 2011. Available online: https://src.fedoraproject.org/repo/extras/ngspice/ngspice23-manual.pdf/eb0d68eb463a41a0571757a00a5b9f9d/ngspice23-manual.pdf (accessed on 25 November 2021).
- Nichols, K.; Kazmierski, T.; Zwolinski, M.; Brown, A. Overview of SPICE-like circuit simulation algorithms. Circuits Devices Syst. IEE Proc. 1994, 141, 242–250. [Google Scholar] [CrossRef]
- Demiryurek, O.; Yildiz, A. Modified nodal analysis formulation of operational transconductance amplifier. In Proceedings of the 5th European Conference on Circuits and Systems for Communications (ECCSC’10), Belgrade, Serbia, 23–25 November 2010; pp. 173–176. [Google Scholar]
- Gubian, P.; Zanella, M. Stability properties of integration methods in SPICE transient analysis. In Proceedings of the IEEE International Sympoisum on Circuits and Systems, Singapore, 11–14 June 1991. [Google Scholar]
- Gear, C.W. Numerical Integration of Stiffy Ordinary Equations; Technical Report 221; Department of Computer Science, University of Illinois: Urbana, IL, USA, 1967. [Google Scholar]
- Almeida, L.B. C1. 2 Multilayer Perceptrons. In Handbook of Neural Computation C; Elsevier: Amsterdam, The Netherlands, 1997. [Google Scholar]
- Brownlee, J. A gentle introduction to the rectified linear unit (ReLU). Mach. Learn. Mastery 2019, 6, 9. [Google Scholar]
- Gupta, G.K.; Sacks-davis, R.; Tischer, P.E. A Review of Recent Developments in Solving ODEs. ACM Comput. Surv. 1985, 17, 4–47. [Google Scholar]
- Sapna, S.; Tamilarasi, A.; Kumar, M.P. Backpropagation learning algorithm based on Levenberg Marquardt Algorithm. Comp. Sci. Inform. Technol. 2012, 2, 393–398. [Google Scholar]
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. 2015. Available online: https://github.com/tensorflow/tensorflow (accessed on 25 November 2021).
- Chollet, F. Keras–GitHub. 2015. Available online: https://github.com/fchollet/keras (accessed on 25 November 2021).
- Dobes, J. Advanced types of the sensitivity analysis in frequency and time domains. Int. J. Electron. Commun. 2009, 63, 52–64. [Google Scholar] [CrossRef]
- Kumar, A.; Tiwari, K. Wide Tuning Range CMOS VCO. Int. J. Eng. Manuf. 2017, 7, 31–38. [Google Scholar] [CrossRef] [Green Version]
- Baker, J. Ring Oscillator with odd number of CMOS Inverters. Available online: https://www.youspice.com/spiceprojects/spice-simulation-projects/signal-generation-circuits-spice-simulation-projects/ring-oscillator-with-odd-number-of-cmos-inverters/ (accessed on 25 November 2021).
TR | TRP | GR | GRP | GRN 1% | TRN 1% | GRN 5% | TRN 5% | GRN 10% | TRN 10% | |
---|---|---|---|---|---|---|---|---|---|---|
CMOS VCO | 16,196 | 17,965 | 16,477 | 19,119 | 16,352 | 17,201 | 13,716 | 16,354 | 16,216 | 15,799 |
Ring Oscillator | 9112 | 9145 | 11,252 | 7981 | 4997 | 6944 | 6792 | 7925 | 8258 | 7809 |
MOS Amplifier | 5532 | 4136 | 6510 | 5343 | 3055 | 3887 | 3826 | 4191 | 4147 | 4037 |
JFET Amplifier | 3140 | 2270 | 3947 | 1837 | 1812 | 1372 | 1872 | 1773 | 1907 | 1900 |
CMOS Multiplier | 4012 | 3322 | 4079 | 3996 | 2096 | 3346 | 2805 | 3149 | 3355 | 3408 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Černý, D.; Dobeš, J. Deep Learning Neural Network Algorithm for Computation of SPICE Transient Simulation of Nonlinear Time Dependent Circuits. Electronics 2022, 11, 15. https://doi.org/10.3390/electronics11010015
Černý D, Dobeš J. Deep Learning Neural Network Algorithm for Computation of SPICE Transient Simulation of Nonlinear Time Dependent Circuits. Electronics. 2022; 11(1):15. https://doi.org/10.3390/electronics11010015
Chicago/Turabian StyleČerný, David, and Josef Dobeš. 2022. "Deep Learning Neural Network Algorithm for Computation of SPICE Transient Simulation of Nonlinear Time Dependent Circuits" Electronics 11, no. 1: 15. https://doi.org/10.3390/electronics11010015
APA StyleČerný, D., & Dobeš, J. (2022). Deep Learning Neural Network Algorithm for Computation of SPICE Transient Simulation of Nonlinear Time Dependent Circuits. Electronics, 11(1), 15. https://doi.org/10.3390/electronics11010015