PEDTARA: Priority-Based Energy Efficient, Delay and Temperature Aware Routing Algorithm Using Multi-Objective Genetic Chaotic Spider Monkey Optimization for Critical Data Transmission in WBANs
Abstract
:1. Introduction
- The development of PEDTARA using a hybrid optimization algorithm of Multi-objective Genetic Chaotic Spider Monkey Optimization (MGCSMO) to harvest the benefits of enhanced SMO, genetic algorithms and chaotic optimization. The MGCSMO enhances the optimal routing path selection based on priority and quality metrics of energy, delay, path loss and reliability;
- The utilization of residual energy, link reliability, path loss and queue length in PEDTARA traffic priority-based routing objective modelling where the temperature factor is considered in the forwarding node selection process. This objective modelling improves energy efficiency, reduces congestion and delay and achieves emergency transmission when needed;
- The patient data in the WBAN are classified into three priority classes: normal data, on-demand data and emergency data based on the severity of physiological information. Then, the PEDTARA protocol is applied adaptively for each priority class;
- The normal data are transmitted through available optimal paths selected by PEDTARA while the emergency data transmit all possible energy-efficient optimal shortest paths without conflicts. In the case of on-demand data, the on-demand PEDTARA is adapted to ensure effective transmission without delay.
2. Related Works
2.1. Energy-Efficient Routing Models
2.2. Temperature Aware Routing Models
2.3. Priority Aware Routing Models
2.4. Limitations of Methods in the Literature
3. PEDTARA Methodology
3.1. Classification of Patient Data
3.2. Network Model
3.3. Multi-Objective Fitness Function for Routing Model
3.3.1. Energy Model
3.3.2. Link Reliability Model
3.3.3. Path Loss Model
3.3.4. Congestion Model
3.4. Multi-Objective Genetic Chaotic Spider Monkey Optimization Algorithm for Path Selection
Algorithm 1 MGCSMO |
Begin Initialize Population size N, Local Leader Limit, Global Leader Limit, Max Group Limit, Perturbation rate Determine the Max iterations, Dimension (D) Initialize using Equation (19) Set Iterations = 1 Compute fitness for all the solutions (spider monkey food sources) While Iterations Max iterations do Select Local Leader for each local group and Global Leader For each solution, Randomly select a solution from the local group Crossover Local Leader (or Global Leader) and randomly selected solution Perform mutation on the crossover result End for Evaluate the whole population Update solutions in local groups using Equation (21) Apply the greedy selection process based on fitness values of new solutions Calculate probability for all group members using Equation (22) Produce new solutions for all the group members using Equation (23) Update positions of the local and global leader through the greedy selection process If any Local group leader reaches Local Leader Limit Update Local Leader and Global leader using Equation (24) End if If Global leader reaches Global Leader Limit Split the group into smaller groups End if End while If the best solution is improved Increment Iteration by 1 Return the best solution Else Merge all the groups & re-split the groups until Max group limit End if End |
3.5. MGCSMO Based PEDTARA Routing Procedure
4. Results and Discussion
4.1. Evaluation of PEDTARA for Different Traffic Classes
4.2. Performance Comparison of PEDTARA with Other Models
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Khan, J.Y.; Yuce, M.R.; Bulger, G.; Harding, B. Wireless body area network (WBAN) design techniques and performance evaluation. J. Med. Syst. 2012, 36, 1441–1457. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, W.A.N.W.; Yaakob, N.; Elobaid, M.E.; Warip, M.N.M.; Yah, S.A. Energy-efficient remote healthcare monitoring using IoT: A review of trends and challenges. In Proceedings of the International Conference on Internet of Things and Cloud Computing, Cambridge, UK, 22–23 March 2016; pp. 1–8. [Google Scholar]
- Cicioğlu, M.; Çalhan, A. SDN-Enabled Wireless Body Area Networks. In Proceedings of the 2018 6th International Conference on Control Engineering & Information Technology (CEIT), Istanbul, Turkey, 25–27 October 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–5. [Google Scholar]
- Filipe, L.; Fdez-Riverola, F.; Costa, N.; Pereira, A. Wireless body area networks for healthcare applications: Protocol stack review. Int. J. Distrib. Sens. Netw. 2015, 11, 213705. [Google Scholar] [CrossRef]
- Cavallari, R.; Martelli, F.; Rosini, R.; Buratti, C.; Verdone, R. A survey on wireless body area networks: Technologies and design challenges. IEEE Commun. Surv. Tutor. 2014, 16, 1635–1657. [Google Scholar] [CrossRef]
- Ivanov, S.; Foley, C.; Balasubramaniam, S.; Botvich, D. Virtual groups for patient WBAN monitoring in medical environments. IEEE Trans. Biomed. Eng. 2012, 59, 3238–3246. [Google Scholar] [CrossRef]
- Yi, C.; Wang, L.; Li, Y. Energy-efficient transmission approach for WBAN based on threshold distance. IEEE Sens. J. 2015, 15, 5133–5141. [Google Scholar] [CrossRef]
- Sangwan, A.; Bhattcharya, P.P. A study on various issues in different layers of WBAN. Int. J. Comput. Appl. 2015, 975, 8887. [Google Scholar] [CrossRef]
- Kathuria, M.; Gambhir, S. Improvement of quality of service parameters in dynamic and heterogeneous WBAN. Indones. J. Electr. Eng. Inform. 2016, 4, 299–306. [Google Scholar] [CrossRef] [Green Version]
- Kaur, N.; Singh, S. Optimized cost-effective and energy-efficient routing protocol for wireless body area networks. Ad Hoc Netw. 2017, 61, 65–84. [Google Scholar] [CrossRef]
- Yan, J.; Peng, Y.; Shen, D.; Yan, X.; Deng, Q. An Artificial Bee Colony-Based Green Routing Mechanism in WBANs for Sensor-Based E-Healthcare Systems. Sensors 2018, 18, 3268. [Google Scholar] [CrossRef] [Green Version]
- Abidi, B.; Jilbab, A.; Mohamed, E.H. An energy-efficient routing protocol for wireless body area networks. J. Med. Eng. Technol. 2018, 42, 290–297. [Google Scholar] [CrossRef]
- Ullah, Z.; Ahmed, I.; Khan, F.A.; Asif, M.; Nawaz, M.; Ali, T.; Khalid, M.; Niaz, F. Energy-efficient Harvested-Aware clustering and cooperative Routing Protocol for WBAN (E-HARP). IEEE Access 2019, 7, 100036–100050. [Google Scholar] [CrossRef]
- Cicioğlu, M.; Çalhan, A. SDN-based wireless body area network routing algorithm for healthcare architecture. Etri J. 2019, 41, 452–464. [Google Scholar] [CrossRef] [Green Version]
- Qu, Y.; Zheng, G.; Wu, H.; Ji, B.; Ma, H. An energy-efficient routing protocol for reliable data transmission in wireless body area networks. Sensors 2019, 19, 4238. [Google Scholar] [CrossRef] [Green Version]
- Chavva, S.R.; Sangam, R.S. An energy-efficient multi-hop routing protocol for health monitoring in wireless body area networks. Netw. Model. Anal. Health Inform. Bioinform. 2019, 8, 21. [Google Scholar] [CrossRef]
- Yang, G.; Wu, X.W.; Li, Y.; Ye, Q. Energy-efficient protocol for routing and scheduling in wireless body area networks. Wirel. Netw. 2020, 26, 1265–1273. [Google Scholar] [CrossRef]
- Sagar, A.K.; Singh, S.; Kumar, A. Energy-aware WBAN for health monitoring using critical data routing (CDR). Wirel. Pers. Commun. 2020, 112, 273–302. [Google Scholar] [CrossRef]
- Cicioğlu, M.; Çalhan, A. Energy-efficient and SDN-enabled routing algorithm for wireless body area network. Comput. Commun. 2020, 160, 228–239. [Google Scholar] [CrossRef]
- Raj, A.S.; Chinnadurai, M. Energy-efficient routing algorithm in wireless body area networks for smart wearable patches. Comput. Commun. 2020, 153, 85–94. [Google Scholar]
- Qureshi, K.N.; Din, S.; Jeon, G.; Piccialli, F. Link quality and energy utilization based preferable next-hop selection routing for wireless body area networks. Comput. Commun. 2020, 149, 382–392. [Google Scholar] [CrossRef]
- Khan, R.A.; Xin, Q.; Roshan, N. RK-Energy Efficient Routing Protocol for Wireless Body Area Sensor Networks. Wirel. Pers. Commun. 2020, 116, 709–721. [Google Scholar] [CrossRef]
- Newell, G.; Vejarano, G. Motion-Based Routing and Transmission Power Control in Wireless Body Area Networks. IEEE Open J. Commun. Soc. 2020, 1, 444–461. [Google Scholar] [CrossRef]
- Monowar, M.M.; Bajaber, F. On designing thermal-aware localized QoS routing protocol for In-Vivo sensor nodes in wireless body area networks. Sensors 2015, 15, 14016–14044. [Google Scholar] [CrossRef] [Green Version]
- El Azhari, M.; Toumanari, A.; Latif, R.; El Moussaid, N. Relay based thermal aware and mobility support routing protocol for wireless body sensor networks. Int. J. Commun. Netw. Inf. Secur. 2016, 8, 64. [Google Scholar]
- Maymand, L.Z.; Ayatollahitafti, V.; Gandomi, A. Traffic control thermal-aware routing in body area networks. J. Soft Comput. Decis. Support Syst. 2017, 4, 17–22. [Google Scholar]
- Bhangwar, A.R.; Kumar, P.; Ahmed, A.; Channa, M.I. Trust and thermal aware routing protocol (TTRP) for wireless body area networks. Wirel. Pers. Commun. 2017, 97, 349–364. [Google Scholar] [CrossRef]
- Bhangwar, A.R.; Ahmed, A.; Khan, U.A.; Saba, T.; Almustafa, K.; Haseeb, K.; Islam, N. WETRP: Weight based energy & temperature aware routing protocol for wireless body sensor networks. IEEE Access 2019, 7, 87987–87995. [Google Scholar]
- Kim, B.S.; Shah, B.; Al-Obediat, F.; Ullah, S.; Kim, K.H.; Kim, K.I. An enhanced mobility and temperature aware routing protocol through multi-criteria decision-making method in wireless body area networks. Appl. Sci. 2018, 8, 2245. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.S.; Kim, K.I.; Shah, B.; Ullah, S. A Forwarder Based Temperature Aware Routing Protocol in Wireless Body Area Networks. J. Internet Technol. 2019, 20, 1157–1166. [Google Scholar]
- Kathe, K.S.; Deshpande, U.A. A Thermal Aware Routing Algorithm for a wireless body area network. Wirel. Pers. Commun. 2019, 105, 1353–1380. [Google Scholar] [CrossRef]
- Javed, M.; Ahmed, G.; Mahmood, D.; Raza, M.; Ali, K.; Ur-Rehman, M. TAEO-A thermal aware & energy-optimized routing protocol for wireless body area networks. Sensors 2019, 19, 3275. [Google Scholar] [CrossRef] [Green Version]
- Selem, E.; Fatehy, M.; Abd El-Kader, S.M.; Nassar, H. THE (temperature heterogeneity energy) aware routing protocol for IoT health application. IEEE Access 2019, 7, 108957–108968. [Google Scholar] [CrossRef]
- Jamil, F.; Iqbal, M.A.; Amin, R.; Kim, D. Adaptive thermal-aware routing protocol for wireless body area network. Electronics 2019, 8, 47. [Google Scholar] [CrossRef] [Green Version]
- Banuselvasaraswathy, B.; Rathinasabapathy, V. Self-heat controlling energy-efficient OPOT routing protocol for WBAN. Wirel. Netw. 2020, 26, 1–12. [Google Scholar] [CrossRef]
- Caballero, E.; Ferreira, V.C.; Lima, R.A.; Albuquerque, C.; Muchaluat-Saade, D.C. LATOR: Link-Quality Aware and Thermal Aware On-Demand Routing Protocol for WBAN. In Proceedings of the 2020 International Conference on Systems, Signals and Image Processing (IWSSIP), Niteroi, Brazil, 1–3 July 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 337–342. [Google Scholar]
- Shahbazi, Z.; Byun, Y.C. Towards a Secure Thermal-Energy Aware Routing Protocol in Wireless Body Area Network Based on Blockchain Technology. Sensors 2020, 20, 3604. [Google Scholar] [CrossRef]
- Elhadj, H.B.; Elias, J.; Chaari, L.; Kamoun, L. A priority-based cross-layer routing protocol for healthcare applications. Ad Hoc Netw. 2016, 42, 1–18. [Google Scholar] [CrossRef]
- Ahmed, G.; Jianhua, Z.; Fareed, M.M.S. PERA: Priority-based energy-efficient routing algorithm for WBANs. Wirel. Pers. Commun. 2017, 96, 4737–4753. [Google Scholar] [CrossRef]
- ShariatmadariSerkani, M.; Mohammadzadeh, J.; Motalebi, M. A Reliable Routing Algorithm for Delay Sensitive Data in Body Area Networks. J. Adv. Comput. Eng. Technol. 2018, 4, 229–236. [Google Scholar]
- Majumder, A.B.; Gupta, S. An energy-efficient congestion avoidance priority-based routing algorithm for body area network. In Industry Interactive Innovations in Science, Engineering and Technology; Springer: Singapore, 2018; pp. 545–552. [Google Scholar]
- Ventura, J.M.; Fajardo, A.; Medina, R. Priority Based Data Transmission for WBAN. Int. J. Electr. Comput. Eng. 2019, 9, 3671. [Google Scholar] [CrossRef]
- Awan, K.M.; Ashraf, N.; Saleem, M.Q.; Sheta, O.E.; Qureshi, K.N.; Zeb, A.; Haseeb, K.; Sadiq, A.S. A priority-based congestion-avoidance routing protocol using IoT-based heterogeneous medical sensors for energy efficiency in healthcare wireless body area networks. Int. J. Distrib. Sens. Netw. 2019, 15, 1550147719853980. [Google Scholar] [CrossRef]
- Wang, W.; Lu, D.; Zhou, X.; Zhang, B.; Mu, J.; Li, Y. A New Traffic Priority Aware and Energy Efficient Protocol for WBANs. In Proceedings of the International Conference in Communications, Signal Processing, and Systems, Urumqi, China, 20–22 July 2019; Springer: Singapore, 2019; pp. 1429–1437. [Google Scholar]
- Ullah, F.; Ullah, Z.; Ahmad, S.; Islam, I.U.; Rehman, S.U.; Iqbal, J. Traffic priority-based delay-aware and energy-efficient path allocation routing protocol for wireless body area network. J. Ambient Intell. Humaniz. Comput. 2019, 10, 3775–3794. [Google Scholar] [CrossRef]
- Geetha, M.; Ganesan, R. CEPRAN-Cooperative Energy Efficient and Priority Based Reliable Routing Protocol with Network Coding for WBAN. Wirel. Pers. Commun. 2021, 117, 3153–3171. [Google Scholar] [CrossRef]
- Arghavani, A.; Zhang, H.; Huang, Z.; Chen, Y. Chimp: A learning-based power-aware communication protocol for wireless body area networks. ACM Trans. Embed. Comput. Syst. TECS 2019, 18, 1–26. [Google Scholar] [CrossRef]
- Arghavani, A.; Zhang, H.; Huang, Z.; Chen, Y.; Chen, Z. Tuatara: Location-driven Power-adaptive Communication for Wireless Body Area Networks. IEEE Trans. Mob. Comput. 2021, 1–14. [Google Scholar] [CrossRef]
- Ahmed, O.; Ren, F.; Hawbani, A.; Al-Sharabi, Y. Energy Optimized Congestion Control-Based Temperature Aware Routing Algorithm for Software-Defined Wireless Body Area Networks. IEEE Access 2020, 8, 41085–41099. [Google Scholar] [CrossRef]
Vital Sign | Regular Value for a Healthy Person | Critical Thresholds | |
---|---|---|---|
Low Threshold | High Threshold | ||
Temperature (Celsius) | 36.5–37.5 | Below 35 | Above 40 |
Heart rate (beats/min) | 51–119 | 0–50 | 120–140 |
Blood pressure (mmHg) | 90–120 | 70–90 | 140–190 |
BP Diastolic (mmHg) | 60–80 | 40–60 | 90–100 |
Respiration rate (breaths/min) | 12–49 | 0–11 | Above 50 |
Parameters | Settings |
---|---|
Area | 100 m × 100 m |
Type of deployment | Fixed and movable |
Number of nodes | 100 |
Initial node energy | Normal node: 100 Joules WBANC: 200 Joules |
Transmission power | −25 dBm, −15 dBm, −10 dBm |
Reception power | 7 dBm |
MAC | IEEE 802.15.6 |
Channel type | Wireless Channel |
Traffic type | CBR |
Packet size | 32 bytes |
Packet rate | 8 packets/sec |
Radio transmission range | 25 m |
Methods | Number of Nodes | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | |
CDR | 0.6569 | 0.6981 | 0.8034 | 0.8314 | 0.9427 | 0.9516 | 0.9816 | 0.9831 | 0.9841 | 0.9991 |
TAEO | 0.3724 | 0.3909 | 0.5269 | 0.6280 | 0.6665 | 0.6692 | 0.7011 | 0.7379 | 0.8819 | 0.9203 |
Tripe-EEC | 0.1734 | 0.1981 | 0.4168 | 0.4317 | 0.4607 | 0.4897 | 0.5391 | 0.5479 | 0.5612 | 0.6663 |
EOCC-TARA | 0.1332 | 0.1672 | 0.1711 | 0.1781 | 0.2920 | 0.3395 | 0.3689 | 0.3993 | 0.4177 | 0.4228 |
PEDTARA | 0.0155 | 0.0326 | 0.0527 | 0.0605 | 0.0835 | 0.1062 | 0.1280 | 0.1904 | 0.2691 | 0.3015 |
Methods | Number of Nodes | ||||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
CDR | 10 | 21 | 22 | 24 | 25 | 28 | 28 | 29 | 30 |
TAEO | 5 | 14 | 16 | 17 | 18 | 19 | 21 | 22 | 28 |
Tripe-EEC | 5 | 11 | 13 | 13 | 13 | 14 | 15 | 16 | 18 |
EOCC-TARA | 3 | 7 | 8 | 8 | 8 | 10 | 12 | 12 | 14 |
PEDTARA | 1 | 2 | 3 | 3 | 4 | 4 | 7 | 7 | 8 |
Methods | Transmit Power (dBm) | ||||
---|---|---|---|---|---|
−25 | −20 | −15 | −10 | −5 | |
CDR | 1.0617 | 1.5439 | 1.5639 | 1.5787 | 1.9412 |
TAEO | 0.5881 | 1.1036 | 1.2839 | 1.3701 | 1.7339 |
Tripe-EEC | 0.4747 | 0.7384 | 0.7765 | 0.9690 | 1.1959 |
EOCC-TARA | 0.2012 | 0.4113 | 0.4579 | 0.7329 | 0.7353 |
PEDTARA | 0.1725 | 0.1733 | 0.1830 | 0.3037 | 0.4121 |
Methods | Number of Rounds | ||||||||
---|---|---|---|---|---|---|---|---|---|
0 | 2000 | 4000 | 6000 | 8000 | 10,000 | 12,000 | 14,000 | 16,000 | |
CDR | 0.0196 | 0.0636 | 0.1058 | 0.1500 | 0.1673 | 0.2160 | 0.3912 | 0.4795 | 0.6279 |
TAEO | 0.1097 | 0.1999 | 0.2428 | 0.2703 | 0.3309 | 0.3947 | 0.4386 | 0.5439 | 0.7635 |
Tripe-EEC | 0.1920 | 0.3181 | 0.3774 | 0.4243 | 0.5201 | 0.5303 | 0.6713 | 0.7551 | 0.8620 |
EOCC-TARA | 0.4046 | 0.4424 | 0.5861 | 0.6456 | 0.6878 | 0.7487 | 0.7691 | 0.8217 | 0.9329 |
PEDTARA | 0.4484 | 0.6963 | 0.7363 | 0.7549 | 0.8256 | 0.8611 | 0.9398 | 0.9727 | 0.9937 |
Methods | Number of Nodes | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | |
CDR | 2.86 | 3.05 | 4.24 | 7.14 | 10.67 | 14.98 | 18.29 | 33.41 | 43.23 | 47.99 |
TAEO | 5.96 | 9.67 | 13.63 | 16.79 | 19.78 | 23.99 | 45.37 | 51.85 | 60.98 | 71.50 |
Tripe-EEC | 47.18 | 48.91 | 49.44 | 50.02 | 52.16 | 57.67 | 61.76 | 64.89 | 65.96 | 77.90 |
EOCC-TARA | 50.02 | 65.37 | 69.86 | 71.26 | 72.24 | 80.03 | 80.54 | 81.75 | 85.94 | 89.09 |
PEDTARA | 68.12 | 72.17 | 74.47 | 81.82 | 82.53 | 88.65 | 90.37 | 90.47 | 97.29 | 97.86 |
Methods | Number of Rounds | ||||||||
---|---|---|---|---|---|---|---|---|---|
0 | 2000 | 4000 | 6000 | 8000 | 10,000 | 12,000 | 14,000 | 16,000 | |
CDR | 0.0012 | 0.0358 | 0.0908 | 0.1194 | 0.1537 | 0.2407 | 0.3225 | 0.4257 | 0.4574 |
TAEO | 0.1056 | 0.1917 | 0.2240 | 0.2665 | 0.2891 | 0.3868 | 0.4243 | 0.5181 | 0.6358 |
Tripe-EEC | 0.2362 | 0.2691 | 0.3411 | 0.4609 | 0.4714 | 0.5822 | 0.6377 | 0.6620 | 0.6753 |
EOCC-TARA | 0.4401 | 0.5762 | 0.6074 | 0.6135 | 0.6619 | 0.6761 | 0.7655 | 0.7805 | 0.8754 |
PEDTARA | 0.5271 | 0.6834 | 0.7218 | 0.7703 | 0.7847 | 0.8444 | 0.9160 | 0.9436 | 0.9577 |
Methods | Number of Nodes | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | |
CDR | 40 | 45 | 62 | 74 | 80 | 86 | 103 | 148 | 154 | 183 |
TAEO | 106 | 119 | 136 | 152 | 166 | 180 | 191 | 251 | 280 | 305 |
Tripe-EEC | 114 | 177 | 207 | 211 | 221 | 231 | 330 | 368 | 373 | 415 |
EOCC-TARA | 229 | 230 | 257 | 280 | 304 | 333 | 357 | 416 | 418 | 444 |
PEDTARA | 307 | 309 | 311 | 320 | 338 | 359 | 432 | 456 | 486 | 492 |
Methods | Number of Rounds | ||||||||
---|---|---|---|---|---|---|---|---|---|
0 | 2000 | 4000 | 6000 | 8000 | 10,000 | 12,000 | 14,000 | 16,000 | |
CDR | 3 | 7 | 8 | 9 | 9 | 9 | 10 | 10 | 10 |
TAEO | 2 | 5 | 6 | 6 | 7 | 7 | 9 | 9 | 10 |
Tripe-EEC | 2 | 4 | 5 | 5 | 6 | 6 | 6 | 7 | 9 |
EOCC-TARA | 2 | 2 | 2 | 2 | 3 | 5 | 6 | 7 | 8 |
PEDTARA | 1 | 1 | 1 | 1 | 1 | 2 | 3 | 3 | 6 |
Methods | Number of Rounds | ||||||||
0 | 2000 | 4000 | 6000 | 8000 | 10,000 | 12,000 | 14,000 | 16,000 | |
CDR | 0.78 | 5.94 | 7.73 | 10.48 | 10.97 | 16.62 | 19.62 | 29.42 | 43.24 |
TAEO | 9.23 | 12.65 | 17.04 | 21.20 | 27.29 | 31.58 | 35.07 | 39.67 | 60.35 |
Tripe-EEC | 12.52 | 25.10 | 29.15 | 40.23 | 43.26 | 53.06 | 55.77 | 63.17 | 69.47 |
EOCC-TARA | 13.01 | 31.64 | 40.53 | 59.74 | 65.54 | 68.40 | 70.32 | 75.81 | 76.89 |
PEDTARA | 16.82 | 42.31 | 67.32 | 77.27 | 79.78 | 87.11 | 91.38 | 96.44 | 98.79 |
Methods | Number of Rounds | ||||||||
---|---|---|---|---|---|---|---|---|---|
0 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | |
CDR | 10 | 20 | 22 | 26 | 27 | 28 | 29 | 30 | 30 |
TAEO | 7 | 11 | 13 | 14 | 16 | 18 | 23 | 26 | 28 |
Tripe-EEC | 5 | 5 | 6 | 9 | 10 | 14 | 17 | 21 | 26 |
EOCC-TARA | 1 | 6 | 4 | 4 | 6 | 9 | 12 | 16 | 24 |
PEDTARA | 0 | 0 | 1 | 1 | 2 | 3 | 5 | 8 | 15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, O.; Hu, M.; Ren, F. PEDTARA: Priority-Based Energy Efficient, Delay and Temperature Aware Routing Algorithm Using Multi-Objective Genetic Chaotic Spider Monkey Optimization for Critical Data Transmission in WBANs. Electronics 2022, 11, 68. https://doi.org/10.3390/electronics11010068
Ahmed O, Hu M, Ren F. PEDTARA: Priority-Based Energy Efficient, Delay and Temperature Aware Routing Algorithm Using Multi-Objective Genetic Chaotic Spider Monkey Optimization for Critical Data Transmission in WBANs. Electronics. 2022; 11(1):68. https://doi.org/10.3390/electronics11010068
Chicago/Turabian StyleAhmed, Omar, Min Hu, and Fuji Ren. 2022. "PEDTARA: Priority-Based Energy Efficient, Delay and Temperature Aware Routing Algorithm Using Multi-Objective Genetic Chaotic Spider Monkey Optimization for Critical Data Transmission in WBANs" Electronics 11, no. 1: 68. https://doi.org/10.3390/electronics11010068
APA StyleAhmed, O., Hu, M., & Ren, F. (2022). PEDTARA: Priority-Based Energy Efficient, Delay and Temperature Aware Routing Algorithm Using Multi-Objective Genetic Chaotic Spider Monkey Optimization for Critical Data Transmission in WBANs. Electronics, 11(1), 68. https://doi.org/10.3390/electronics11010068