Optimal Power Allocation for Achieving Secure Green Cognitive Radio Networks
Abstract
:1. Introduction
2. System Model
2.1. Network Model
2.2. Transmission Model
2.3. Power Constraints
3. Ergodic Secure EE Maximization under Average Transmit Power and Average Interference Power Constraints
3.1. Problem Formulation and Transformation
3.2. Optimal Power Allocation
Algorithm 1. Iterative ergodic secure EE maximization algorithm. |
|
4. Limitations of Proposed Scheme and Model Extension for Robust Power Allocation
5. Numerical Results
6. Discussion and Conclusions
6.1. Discussion
6.2. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
SE | Spectral efficiency |
EE | Energy efficiency |
SC | Secrecy capacity |
SU | Secondary user |
PU | Primary user |
CSI | Channel state information |
QoS | Quality of service |
PU-Tx | Primary user transmitter |
SU-Tx | Secondary user transmitter |
PTP | Peak transmit power |
ATP | Peak transmit power |
AIP | Average interference power |
SCM | Secrecy capacity maximization |
EEM | Secrecy capacity maximization |
SNR | Signal-to-noise ratio |
References
- Tragos, E.Z.; Zeadally, S.; Fragkiadakis, A.G.; Siris, V.A. Spectrum assignment in cognitive radio networks: A comprehensive survey. IEEE Commun. Surv. Tutor. 2013, 15, 1108–1135. [Google Scholar] [CrossRef]
- Feng, D.; Jiang, C.; Lim, G.; Cimini, L.J.; Feng, G.; Li, G.Y. A survey of energy-efficient wireless communications. IEEE Commun. Surv. Tutor. 2013, 15, 167–178. [Google Scholar] [CrossRef]
- Huang, X.; Han, T.; Ansari, N. On green-energy-powered cognitive radio networks. IEEE Commun. Surv. Tutor. 2015, 17, 827–842. [Google Scholar] [CrossRef] [Green Version]
- Zou, Y.; Zhu, J.; Wang, X.; Hanzo, L. A survey on wireless security: Technical challenges, recent advances, and future trends. Proc. IEEE 2016, 104, 1727–1765. [Google Scholar] [CrossRef] [Green Version]
- Sharma, R.K.; Rawat, D.B. Advances on security threats and countermeasures for cognitive radio networks: A survey. IEEE Commun. Surv. Tutor. 2015, 17, 1023–1043. [Google Scholar] [CrossRef]
- Pei, Y.; Liang, Y.C.; Zhang, L.; Teh, K.C.; Li, K.H. Secure communication over MISO cognitive radio channels. IEEE Trans. Wirel. Commun. 2010, 9, 1494–1502. [Google Scholar] [CrossRef]
- Pei, Y.; Liang, Y.C.; Teh, K.C.; Li, K.H. Secure communication in multiantenna cognitive radio networks with imperfect channel state information. IEEE Trans. Signal Process. 2011, 59, 1683–1693. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, R.; Liang, Y.C.; Xin, Y.; Cui, S. On the relationship between the multi-antenna secrecy communications and cognitive radio communications. IEEE Trans. Commun. 2010, 58, 1877–1886. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Wang, H.M. On the secrecy throughput maximization for MISO cognitive radio network in slow fading channels. IEEE Trans. Inf. Forensics Secur. 2014, 9, 1814–1827. [Google Scholar] [CrossRef]
- Zou, Y.; Wang, X.; Shen, W. Physical-layer security with multiuser scheduling in cognitive radio networks. IEEE Trans. Commun. 2013, 61, 5103–5113. [Google Scholar] [CrossRef] [Green Version]
- Zou, Y.; Li, X.; Liang, Y.C. Secrecy outage and diversity analysis of cognitive radio systems. IEEE J. Sel. Areas Commun. 2014, 32, 2222–2236. [Google Scholar] [CrossRef] [Green Version]
- Mokari, N.; Parsaeefard, S.; Saeedi, H.; Azmi, P.; Hossain, E. Secure robust ergodic uplink resource allocation in relay-assisted cognitive radio networks. IEEE Trans. Signal Process. 2015, 63, 291–304. [Google Scholar] [CrossRef]
- Ng, D.W.K.; Lo, E.S.; Schober, R. Multiobjective resource allocation for secure communication in cognitive radio networks with wireless information and power transfer. IEEE Trans. Veh. Technol. 2016, 65, 3166–3184. [Google Scholar] [CrossRef] [Green Version]
- Cui, M.; Hu, B.J.; Tang, J.; Wang, Y. Energy-efficient joint power allocation in uplink massive MIMO cognitive radio networks with imperfect CSI. IEEE Access 2017, 5, 27611–27621. [Google Scholar] [CrossRef]
- Wang, S.; Shi, W.; Wang, C. Energy-efficient resource management in OFDM-based cognitive radio networks under channel uncertainty. IEEE Trans. Commun. 2015, 63, 3092–3102. [Google Scholar] [CrossRef]
- Fu, L.; Zhang, Y.J.A.; Huang, J. Energy efficient transmissions in MIMO cognitive radio networks. IEEE J. Sel. Areas Commun. 2013, 31, 2420–2431. [Google Scholar]
- Sun, X.; Tsang, D.H.K. Energy-efficient cooperative sensing scheduling for multi-band cognitive radio networks. IEEE Trans. Wirel. Commun. 2013, 12, 4943–4955. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Ge, M.; Zhao, W. Energy-efficient resource allocation for OFDM-based cognitive radio networks. IEEE Trans. Commun. 2013, 61, 3181–3191. [Google Scholar] [CrossRef]
- Yue, H.; Pan, M.; Fang, Y.; Glisic, S. Spectrum and energy efficient relay station placement in cognitive radio networks. IEEE J. Sel. Areas Commun. 2013, 31, 883–893. [Google Scholar] [CrossRef]
- Xie, R.; Yu, F.R.; Ji, H.; Li, Y. Energy-efficient resource allocation for heterogeneous cognitive radio networks with femtocells. IEEE Trans. Wirel. Commun. 2012, 11, 3910–3920. [Google Scholar]
- Pei, Y.; Liang, Y.C.; Teh, K.C.; Li, K.H. Energy-efficient design of sequential channel sensing in cognitive radio networks: Optimal sensing strategy, power allocation, and sensing order. IEEE J. Sel. Areas Commun. 2011, 29, 1648–1659. [Google Scholar] [CrossRef]
- Bayat, A.; Aïssa, S. Full-duplex cognitive radio with asynchronous energy-efficient sensing. IEEE Trans. Wirel. Commun. 2018, 17, 1066–1080. [Google Scholar] [CrossRef]
- Yadav, R.; Kumar, A.; Singh, K. Green power allocation for cognitive radio networks with spectrum sensing. IEEJ Trans. Electr. Electron. Eng. 2019, 14, 403–410. [Google Scholar] [CrossRef]
- Zappone, A.; Lin, P.H.; Jorswieck, E.A. Energy-efficient secure communications in MISO-SE systems. In Proceedings of the Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 2–5 November 2014; IEEE: Piscataway, NJ, USA; pp. 1001–1005. [Google Scholar]
- Kwon, T.; Wong, V.W.S.; Schober, R. Secure MISO cognitive radio system with perfect and imperfect CSI. In Proceedings of the IEEE Global Communications Conference, Anaheim, CA, USA, 3–7 December 2012; IEEE: Piscataway, NJ, USA; pp. 1236–1241. [Google Scholar]
- Wang, D.; Bai, B.; Chen, W.; Han, Z. Achieving high energy efficiency and physical-layer security in AF relaying. IEEE Trans. Wirel. Commun. 2016, 15, 740–752. [Google Scholar] [CrossRef]
- El-Halabi, M.; Liu, T.; Georghiades, C.N. Secrecy capacity per unit cost. IEEE J. Sel. Areas Commun. 2013, 31, 1909–1920. [Google Scholar] [CrossRef]
- Ng, D.W.K.; Lo, E.S.; Schober, R. Energy-Efficient resource allocation for secure OFDMA systems. IEEE Trans. Veh. Technol. 2012, 61, 2572–2585. [Google Scholar] [CrossRef]
- Zhou, F.; Wang, Y.; Qin, D.; Wang, Y.; Wu, Y. Secure EE maximisation in green CR: Guaranteed SC. IET Commun. 2017, 11, 2507–2513. [Google Scholar] [CrossRef]
- Ouyang, J.; Zhu, W.P.; Massicotte, D.; Lin, M. Energy efficient optimization for physical layer security in cognitive relay networks. In Proceedings of the IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia, 22–27 May 2016; IEEE: Piscataway, NJ, USA; pp. 1–6. [Google Scholar]
- Zhang, M.; Cumanan, K.; Burr, A. Secure energy efficiency optimization for MISO cognitive radio network with energy harvesting. In Proceedings of the IEEE International Conference on Wireless Communications and Signal Processing (WCSP), Nanjing, China, 11–13 October 2017; IEEE: Piscataway, NJ, USA; pp. 1–6. [Google Scholar]
- Kaplan, G.; Shamai, S. Error probabilities for the blockfading Gaussian channel. Arch. Elek. Ubertragung 1995, 49, 192–205. [Google Scholar]
- McEliece, R.; Stark, W. Channels with block interference. IEEE Trans. Inform. Theory 1984, 30, 44–53. [Google Scholar] [CrossRef]
- Ozarow, L.; Shamai, S.; Wyner, A.D. Information theoretic considerations for cellular mobile radio. IEEE Trans. Veh. Technol. 1994, 43, 359–378. [Google Scholar] [CrossRef]
- Agarwal, M.; Guo, D.; Honig, M.L. Limited-Rate Channel State Feedback for Multicarrier Block Fading Channels. IEEE Trans. Inform. Theory 2010, 56, 6116–6132. [Google Scholar] [CrossRef] [Green Version]
- Caire, G.; Knopp, R.; Humblet, P. System capacity of F-TDMA cellular systems. IEEE Trans. Commun. 1998, 46, 1649–1661. [Google Scholar] [CrossRef]
- Haykin, S.; Moher, M. Modern Wireless Communications, 1st ed.; Prentice Hall: Hoboken, NJ, USA, 2005. [Google Scholar]
- Bertoni, H. Radio Propagation for Modern Wireless Systems, 1st ed.; Prentice Hall: Hoboken, NJ, USA, 2000. [Google Scholar]
- Paulraj, A.; Nabar, R.; Gore, D. Introduction to Space-Time Wireless Communications, 1st ed.; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Rappaport, T.S. Wireless Communications: Principles and Practice, 2nd ed.; Pearson: London, UK, 2002. [Google Scholar]
- Wang, D.; Bai, B.; Chen, W.; Han, Z. Energy efficient secure communication over decode-and-forward relay channels. IEEE Trans. Commun. 2015, 63, 892–905. [Google Scholar] [CrossRef]
- Zhang, R. On peak versus average interference power constraints for protecting primary users in cognitive radio networks. IEEE Trans. Wirel. Commun. 2009, 8, 1128–1138. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.; Trappe, W. Securing Wireless Communications at the Physical Layer, 1st ed.; Springer: New York, NY, USA, 2009. [Google Scholar]
- Boyd, S.P.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Singh, K.; Gupta, A.; Ratnarajah, T. QoS-driven resource allocation and EE-balancing for multiuser two-way amplify-and-forward relay networks. IEEE Trans. Wirel. Commun. 2017, 16, 3189–3204. [Google Scholar] [CrossRef] [Green Version]
- Dinkelbach, W. On fractional programming. Manag. Sci. 1967, 13, 492–498. [Google Scholar] [CrossRef]
- Min, A.W.; Shin, K.G. Impact of mobility on spectrum sensing in cognitive radio networks. In Proceedings of the ACM Workshop on Cognitive Radio Networks, Beijing, China, 13–18 September 2009; ACM: New York, NY, USA; pp. 3–18. [Google Scholar]
- Cacciapuoti, A.S.; Akyildiz, I.F.; Paura, L. Primary-user mobility impact on spectrum sensing in Cognitive Radio networks. In Proceedings of the IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Toronto, ON, Canada, 11–14 September 2011; IEEE: Piscataway, NJ, USA; pp. 451–456. [Google Scholar]
- Sama, P.; Wicker, S.B. On the Behaviour of Communication Links of a Node in a Multi-Hop Mobile Environment. In Proceedings of the 5th ACM International Symposium on Mobile Ad Hoc Networking and Computing, Tokyo, Japan, 24–26 May 2004; ACM: New York, NY, USA; pp. 145–156. [Google Scholar]
- Luo, J.; Hubaux, J.P. Joint Mobility and Routing for Lifetime Elongation in Wireless Sensor Networks. In Proceedings of the IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies, Miami, FL, USA, 13–17 March 2005; IEEE: Piscataway, NJ, USA; pp. 1735–1746. [Google Scholar]
- Grossglauser, M.; Tse, D.N.C. Mobility Increases the Capacity of Ad Hoc Wireless Networks. IEEE/ACM Trans. Netw. 2002, 10, 477–486. [Google Scholar] [CrossRef]
- Liu, B.; Brass, P.; Dousse, O.; Nain, P.; Towsley, D. Mobility Improves Coverage of Sensor Networks. In Proceedings of the 6th ACM International Symposium on Mobile Ad Hoc networking and Computing, Urbana-Champaign, IL, USA, 25–27 May 2005; ACM: New York, NY, USA; pp. 300–308. [Google Scholar]
- Tawil, V.; Caldwell, W.; Reede, I.; Kiernan, T.; Stevenson, C.R. IEEE 802.22-09/0029r0; DRAFT 802.22a (amendment) PAR; IEEE: Piscataway, NJ, USA, 2009. [Google Scholar]
- Masmoudi, R.; Belmega, E.V.; Fijalkow, I. Impact of imperfect CSI on resource allocation in cognitive radio channels. In Proceedings of the IEEE 13th International Conference on Wireless and Mobile Computing, Networking and Communications, Rome, Italy, 9–11 October 2017; IEEE: Piscataway, NJ, USA; pp. 293–299. [Google Scholar]
Notation | Definition |
---|---|
PU-Tx | PU Transmitter |
PU-Rx | PU Receiver |
SU-Tx | SU Transmitter |
SU-Rx | SU Receiver |
ED-Rx | Eavesdropper Receiver |
SU Transmit Power at Fading State | |
Gain of SU Channel | |
Gain of SU-Tx to PU-Rx Channel | |
Gain of SU-Tx to ED-Rx Channel | |
Peak Power Budget of SU | |
Average Power Budget of SU | |
Average Interference Power | |
Expectation Operator | |
Energy Efficiency | |
Energy Efficiency Function |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yadav, R.; Singh, K.; Kumar, A. Optimal Power Allocation for Achieving Secure Green Cognitive Radio Networks. Electronics 2022, 11, 1952. https://doi.org/10.3390/electronics11131952
Yadav R, Singh K, Kumar A. Optimal Power Allocation for Achieving Secure Green Cognitive Radio Networks. Electronics. 2022; 11(13):1952. https://doi.org/10.3390/electronics11131952
Chicago/Turabian StyleYadav, Ramnaresh, Keshav Singh, and Ashwani Kumar. 2022. "Optimal Power Allocation for Achieving Secure Green Cognitive Radio Networks" Electronics 11, no. 13: 1952. https://doi.org/10.3390/electronics11131952
APA StyleYadav, R., Singh, K., & Kumar, A. (2022). Optimal Power Allocation for Achieving Secure Green Cognitive Radio Networks. Electronics, 11(13), 1952. https://doi.org/10.3390/electronics11131952