Estimation of Solar Radiation on a PV Panel Surface with an Optimal Tilt Angle Using Electric Charged Particles Optimization
Abstract
:1. Introduction
- It maximized the performance of solar energy systems by optimizing the tilt angle of the PV surface.
- Using the ECPO technique, both anisotropic and isotropic empirical solar radiation models were applied to estimate the solar radiation received on a tilted surface in Dhahran and Makkah, Saudi Arabia.
- It explored the functioning of the ECPO algorithm and its implementation for tilt angle optimization.
2. Mathematical Model of Solar Radiation
2.1. Declination Angle
2.2. Sunset Hour Angle
2.3. Total Solar Radiation
2.4. Diffused Radiation
2.5. Diffuse Radiation Models Using Isotropic and Anisotropic Sky Models
2.5.1. Liu and Jordan Model (LJ)
2.5.2. Badescu Model (BA)
2.5.3. Hay and Davies Model (HD)
2.5.4. Hay−Davies−Klucher−Reindel Model (HDKR)
2.6. Extraterrestrial Radiation
2.7. Power Output
3. Electric Charged Particles Optimization Algorithm (ECPO)
4. Proposed Approach
4.1. Description
4.2. Objective Function
4.3. Design Variable
- Maximize f (IT, P)
- Subjected to βmin ≤ β ≤ βmax
4.4. Constraints
- −10 ≤ β ≤ 90
- Different parameters and functions for applying the ECPO algorithm are used in MATLAB and are expressed as follows.
- Number of variables 1
- Limit [−10, 90]
- Population size or ECP size 50
- No of iteration, MaxITER 100
5. Results and Discussion for Dhahran and Makkah Cities
- Eastern region of Dhahran (26.23° N, 50.03° E)
- Western region of Makkah (21.38° N, 39.85° E)
5.1. Tilted Surfaces Produce Variable Amounts of Solar Radiation When Several Models Are Utilized
5.2. Power Generation Output
5.3. Results for Makkah City
5.4. Solar Radiation Measured on a Tilted Surface Varies When Different Models Are Used
5.5. PV Power Generation Output
5.6. Results Comparison of Dhahran and Makkah Cities
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Furlan, C.; Mortarino, C. Forecasting the Impact of Renewable Energies in Competition with Non-Renewable Sources. Renew. Sustain. Energy Rev. 2018, 81, 1879–1886. [Google Scholar] [CrossRef]
- Kabir, E.; Kumar, P.; Kumar, S.; Adelodun, A.A.; Kim, K.H. Solar Energy: Potential and Future Prospects. Renew. Sustain. Energy Rev. 2018, 82, 894–900. [Google Scholar] [CrossRef]
- REN21. Renewables 2020 Global Status Report; REN21: Paris, France, 2020; ISBN 978-3-948393-00-7. [Google Scholar]
- The True Carbon Footprint of Photovoltaic Energy—ONE Only Natural Energy. Available online: https://www.onlynaturalenergy.com/the-true-carbon-footprint-of-photovoltaic-energy/ (accessed on 31 May 2022).
- Hertwich, E.G.; Gibon, T.; Bouman, E.A.; Arvesen, A.; Suh, S.; Heath, G.A.; Bergesen, J.D.; Ramirez, A.; Vega, M.I.; Shi, L. Integrated Life-Cycle Assessment of Electricity-Supply Scenarios Confirms Global Environmental Benefit of Low-Carbon Technologies. Proc. Natl. Acad. Sci. USA 2015, 112, 6277–6282. [Google Scholar] [CrossRef] [Green Version]
- What Is the Carbon Footprint of a Solar Panel? Overview and Emissions. Available online: https://www.treehugger.com/how-much-co-does-one-solar-panel-create-4868753 (accessed on 31 May 2022).
- Mansour, R.B.; Mateen Khan, M.A.; Alsulaiman, F.A.; Mansour, R.B. Optimizing the Solar PV Tilt Angle to Maximize the Power Output: A Case Study for Saudi Arabia. IEEE Access 2021, 9, 15914–15928. [Google Scholar] [CrossRef]
- IEA. Solar Energy: Maping the Road Ahead; IEA: Paris, France, 2019; Volume 20, pp. 1–82. [Google Scholar]
- Kaddoura, T.O.; Ramli, M.A.M.; Al-Turki, Y.A. On the Estimation of the Optimum Tilt Angle of PV Panel in Saudi Arabia. Renew. Sustain. Energy Rev. 2016, 65, 626–634. [Google Scholar] [CrossRef]
- Li, R.; Li, C.; Liu, M.; Vivo, P.; Zheng, M.; Dai, Z.; Zhan, J.; He, B.; Li, H.; Yang, W.; et al. Hydrogen-Bonded Dopant-Free Hole Transport Material Enables Efficient and Stable Inverted Perovskite Solar Cells. CCS Chem. 2021, 3, 3309–3319. [Google Scholar] [CrossRef]
- Krebs, F.C.; Espinosa, N.; Hösel, M.; Søndergaard, R.R.; Jørgensen, M. 25th Anniversary Article Rise to Power OPV-Based Solar Parks. Adv. Mater. 2014, 26, 29–39. [Google Scholar] [CrossRef]
- Chen, Y.M.; Lee, C.H.; Wu, H.C. Calculation of the Optimum Installation Angle for Fixed Solar-Cell Panels Based on the Genetic Algorithm and the Simulated-Annealing Method. IEEE Trans. Energy Convers. 2005, 20, 467–473. [Google Scholar] [CrossRef]
- Mbungu, N.T.; Naidoo, R.; Bansal, R.C.; Bipath, M. Optimisation of Grid Connected Hybrid Photovoltaic-Wind-Battery System Using Model Predictive Control Design. IET Renew. Power Gener. 2017, 11, 1760–1768. [Google Scholar] [CrossRef]
- Xue, X. Prediction of Daily Diffuse Solar Radiation Using Artificial Neural Networks. Int. J. Hydrogen Energy 2017, 42, 28214–28221. [Google Scholar] [CrossRef]
- Yaniktepe, B.; Genc, Y.A. Establishing New Model for Predicting the Global Solar Radiation on Horizontal Surface. Int. J. Hydrogen Energy 2015, 40, 15278–15283. [Google Scholar] [CrossRef]
- Saraf, G.R.; Hamad, F.A.W. Optimum Tilt Angle for a Flat Plate Solar Collector. Energy Convers. Manag. 1988, 28, 185–191. [Google Scholar] [CrossRef]
- Khahro, S.F.; Tabbassum, K.; Talpur, S.; Alvi, M.B.; Liao, X.; Dong, L. Evaluation of Solar Energy Resources by Establishing Empirical Models for Diffuse Solar Radiation on Tilted Surface and Analysis for Optimum Tilt Angle for a Prospective Location in Southern Region of Sindh, Pakistan. Int. J. Electr. Power Energy Syst. 2015, 64, 1073–1080. [Google Scholar] [CrossRef]
- Benghanem, M. Optimization of Tilt Angle for Solar Panel: Case Study for Madinah, Saudi Arabia. Appl. Energy 2011, 88, 1427–1433. [Google Scholar] [CrossRef]
- Calabrò, E. An Algorithm to Determine the Optimum Tilt Angle of a solar panel from global horizontal solar radiation. J. Renew. Energy 2013, 2013, 12. [Google Scholar] [CrossRef] [Green Version]
- Beringer, S.; Schilke, H.; Lohse, I.; Seckmeyer, G. Case Study Showing That the Tilt Angle of Photovoltaic Plants Is Nearly Irrelevant. Sol. Energy 2011, 85, 470–476. [Google Scholar] [CrossRef]
- Navntoft, L.C.; Fernandez-Ibañez, P.; Garreta, F. UV Solar Radiation on a Tilted and Horizontal Plane: Analysis and Comparison of 4years of Measurements. Sol. Energy 2012, 86, 307–318. [Google Scholar] [CrossRef]
- Despotovic, M.; Nedic, V. Comparison of Optimum Tilt Angles of Solar Collectors Determined at Yearly, Seasonal and Monthly Levels. Energy Convers. Manag. 2015, 97, 121–131. [Google Scholar] [CrossRef]
- Jafarkazemi, F.; Saadabadi, S.A. Optimum Tilt Angle and Orientation of Solar Surfaces in Abu Dhabi, UAE. Renew. Energy 2013, 56, 44–49. [Google Scholar] [CrossRef]
- Chang, T.P. The Sun’s Apparent Position and the Optimal Tilt Angle of a Solar Collector in the Northern Hemisphere. Sol. Energy 2009, 83, 1274–1284. [Google Scholar] [CrossRef]
- Gong, X.; Kulkarni, M. Design Optimization of a Large Scale Rooftop Photovoltaic System. Sol. Energy 2005, 78, 362–374. [Google Scholar] [CrossRef]
- Hussein, H.M.S.; Ahmad, G.E.; El-Ghetany, H.H. Performance Evaluation of Photovoltaic Modules at Different Tilt Angles and Orientations. Energy Convers. Manag. 2004, 45, 2441–2452. [Google Scholar] [CrossRef]
- Suthar, M.; Singh, G.K.; Saini, R.P. Performance Evaluation of Sun Tracking Photovoltaic Systems: A Case Study. IET Conf. Publ. 2013, 2013, 328–335. [Google Scholar] [CrossRef]
- Al Garni, H.Z.; Awasthi, A.; Ramli, M.A.M. Optimal Design and Analysis of Grid-Connected Photovoltaic under Different Tracking Systems Using HOMER. Energy Convers. Manag. 2018, 155, 42–57. [Google Scholar] [CrossRef]
- Vermaak, H.J. Techno-Economic Analysis of Solar Tracking Systems in South Africa. Energy Procedia 2014, 61, 2435–2438. [Google Scholar] [CrossRef] [Green Version]
- Eldin, S.A.S.; Abd-Elhady, M.S.; Kandil, H.A. Feasibility of Solar Tracking Systems for PV Panels in Hot and Cold Regions. Renew. Energy 2016, 85, 228–233. [Google Scholar] [CrossRef]
- Sinha, S.; Chandel, S.S. Analysis of Fixed Tilt and Sun Tracking Photovoltaic-Micro Wind Based Hybrid Power Systems. Energy Convers. Manag. 2016, 115, 265–275. [Google Scholar] [CrossRef]
- de Bernardez, L.S.; Buitrago, R.H.; García, N.O. Photovoltaic Generated Energy and Module Optimum Tilt Angle from Weather Data. Int. J. Sustain. Energy 2011, 30, 311–320. [Google Scholar] [CrossRef]
- Akhlaghi, S.; Sangrody, H.; Sarailoo, M.; Rezaeiahari, M. Efficient Operation of Residential Solar Panels with Determination of the Optimal Tilt Angle and Optimal Intervals Based on Forecasting Model. IET Renew. Power Gener. 2017, 11, 1261–1267. [Google Scholar] [CrossRef]
- Chang, Y.P. An Ant Direction Hybrid Differential Evolution Algorithm in Determining the Tilt Angle for Photovoltaic Modules. Expert Syst. Appl. 2010, 37, 5415–5422. [Google Scholar] [CrossRef]
- Chang, Y.P. Optimal the Tilt Angles for Photovoltaic Modules Using PSO Method with Nonlinear Time-Varying Evolution. Energy 2010, 35, 1954–1963. [Google Scholar] [CrossRef]
- Chang, Y.P. Optimal the Tilt Angles for Photovoltaic Modules in Taiwan. Int. J. Electr. Power Energy Syst. 2010, 32, 956–964. [Google Scholar] [CrossRef]
- Ismail, M.S.; Moghavvemi, M.; Mahlia, T.M.I. Analysis and Evaluation of Various Aspects of Solar Radiation in the Palestinian Territories. Energy Convers. Manag. 2013, 73, 57–68. [Google Scholar] [CrossRef]
- Tiwari, G.N.; Ahmad, M.J. Optimization of Tilt Angle for Solar Collector to Receive Maximum Radiation. Open Renew. Energy J. 2009, 2, 19–24. [Google Scholar] [CrossRef]
- Sudhakar, K.; Srivastava, T.; Satpathy, G.; Premalatha, M. Modelling and Estimation of Photosynthetically Active Incident Radiation Based on Global Irradiance in Indian Latitudes. Int. J. Energy Environ. Eng. 2013, 4, 21. [Google Scholar] [CrossRef] [Green Version]
- Klein, S.A.; Theilacker, J.C. An Algorithm for Calculating Monthly-Average Radiation on Inclined Surfaces. J. Sol. Energy Eng. Trans. ASME 1981, 103, 29–33. [Google Scholar] [CrossRef]
- Yadav, A.K.; Chandel, S.S. Tilt Angle Optimization to Maximize Incident Solar Radiation: A Review. Renew. Sustain. Energy Rev. 2013, 23, 503–513. [Google Scholar] [CrossRef]
- Noorian, A.M.; Moradi, I.; Kamali, G.A. Evaluation of 12 Models to Estimate Hourly Diffuse Irradiation on Inclined Surfaces. Renew. Energy 2008, 33, 1406–1412. [Google Scholar] [CrossRef]
- Hafez, A.Z.; Soliman, A.; El-Metwally, K.A.; Ismail, I.M. Tilt and Azimuth Angles in Solar Energy Applications—A Review. Renew. Sustain. Energy Rev. 2017, 77, 147–168. [Google Scholar] [CrossRef]
- Khatib, T.; Mohamed, A.; Mahmoud, M.; Sopian, K. Optimization of the Tilt Angle of Solar Panels for Malaysia. Energy Sources Part A Recover. Util. Environ. Eff. 2015, 37, 606–613. [Google Scholar] [CrossRef]
- Hailu, G.; Fung, A.S. Optimum Tilt Angle and Orientation of Photovoltaic Thermal System for Application in Greater Toronto Area, Canada. Sustainability 2019, 11, 6443. [Google Scholar] [CrossRef] [Green Version]
- Yadav, P.; Chandel, S.S. Comparative Analysis of Diffused Solar Radiation Models for Optimum Tilt Angle Determination for Indian Locations. Appl. Sol. Energy 2014, 50, 53–59. [Google Scholar] [CrossRef]
- Shukla, K.N.; Rangnekar, S.; Sudhakar, K. Comparative Study of Isotropic and Anisotropic Sky Models to Estimate Solar Radiation Incident on Tilted Surface: A Case Study for Bhopal, India. Energy Rep. 2015, 1, 96–103. [Google Scholar] [CrossRef] [Green Version]
- Jakhrani, A.Q.; Othman, A.; Rigit, A.R.H.; Samo, S.R.; Ahmed, S. Estimation of Incident Solar Radiation on Tilted Surface by Different Empirical Models. Int. J. Sci. Res. Publ. 2012, 2, 15–20. [Google Scholar]
- Bouchekara, H.R.E.H. Electric Charged Particles Optimization and Its Application to the Optimal Design of a Circular Antenna Array; Springer: Dordrecht, The Netherlands, 2021; Volume 54, ISBN 0123456789. [Google Scholar]
- Alanezi, M.A.; Bouchekara, H.R.E.H.; Mohammad, S.; Shahriar, Y.A.S.; Javaid, M.S.; Khodja, M. Motion-Encoded Electric Charged Particles Optimization for Moving Target Search Using Unmanned Aerial Vehicles. Sensors 2021, 21, 6568. [Google Scholar] [CrossRef]
- Hidayat, T.; Ramli, M.A.M.; Bouchekara, H.R.E.H.; Khalid, J.; Budiman, F.N. Design of 3D Wind Farm Layout Using an Improved Electric Charge Particles Optimization with Hub-Height Variety. IEEE Access 2022, 10, 31385–31396. [Google Scholar] [CrossRef]
- Jacobson, M.Z.; Jadhav, V. World Estimates of PV Optimal Tilt Angles and Ratios of Sunlight Incident upon Tilted and Tracked PV Panels Relative to Horizontal Panels. Sol. Energy 2018, 169, 55–66. [Google Scholar] [CrossRef]
- Mehleri, E.D.; Zervas, P.L.; Sarimveis, H.; Palyvos, J.A.; Markatos, N.C. Determination of the Optimal Tilt Angle and Orientation for Solar Photovoltaic Arrays. Renew. Energy 2010, 35, 2468–2475. [Google Scholar] [CrossRef]
- Deceased, J.A.D.; Beckman, W.A. Solar Engineering of Thermal Processes; John Wiley and Sons Inc.: Hoboken, NJ, USA, 1982; Volume 3, ISBN 9780470873663. [Google Scholar]
- Widen, J. Distributed Photovoltaics in the Swedish Energy System Model Development and Simulations. Ph.D. Thesis, Uppsala University, Uppsala, Sweden, 2009. [Google Scholar]
- Robinson, D.; Stone, A. Solar Radiation Modelling in the Urban Context. Sol. Energy 2004, 77, 295–309. [Google Scholar] [CrossRef]
- Liu, B.Y.H.; Jordan, R.C. The Interrelationship and Characteristic Distribution of Direct, Diffuse and Total Solar Radiation. Sol. Energy 1960, 4, 1–19. [Google Scholar] [CrossRef]
- Oladigbolu, J.O.; Ramli, M.A.M.; Al-Turki, Y.A. Feasibility Study and Comparative Analysis of Hybrid Renewable Power System for Off-Grid Rural Electrification in a Typical Remote Village Located in Nigeria. IEEE Access 2020, 8, 171643–171663. [Google Scholar] [CrossRef]
Number of Days per Period | Liu and Jordan (Isotropic Model) | Badescu (Isotropic Model) | Hay and Davies (Anisotropic Model) | HDKR (Anisotropic Model) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Tilt Angle (°) | IT Wh/m2/Day | Ig Wh/m2/Day | Tilt Angle (°) | IT Wh/m2/Day | Ig Wh/m2/Day | Tilt Angle (°) | IT Wh/m2/Day | Ig Wh/m2/Day | Tilt Angle (°) | IT Wh/m2/Day | Ig Wh/m2/Day | |
30 | 41.89 | 5006.38 | 4052.97 | 37.08 | 4852.66 | 4052.97 | 41.89 | 5006.38 | 4052.97 | 43.77 | 5135.26 | 4052.97 |
30 | 34.86 | 5502.71 | 4779.07 | 29.70 | 5372.99 | 4779.07 | 34.86 | 5502.70 | 4779.07 | 37.06 | 5625.23 | 4779.07 |
30 | 23.71 | 5925.52 | 5536.53 | 18.85 | 5848.74 | 5536.53 | 23.70 | 5925.40 | 5536.53 | 26.56 | 6027.05 | 5536.53 |
30 | 12.14 | 5665.67 | 5626.47 | 8.65 | 5642.15 | 5626.47 | 12.14 | 5665.67 | 5626.47 | 16.03 | 5728.69 | 5626.47 |
30 | 5.70 | 7065.86 | 6991.53 | 4.26 | 7059.93 | 6991.53 | 5.70 | 7065.86 | 6991.53 | 9.21 | 7104.45 | 6991.53 |
30 | 2.51 | 7375.66 | 7356.17 | 1.87 | 7374.45 | 7356.17 | 2.51 | 7375.66 | 7356.17 | 6.08 | 7399.05 | 7356.17 |
30 | 4.24 | 7213.63 | 7204.33 | 3.12 | 7210.17 | 7204.33 | 4.24 | 7213.63 | 7204.33 | 7.91 | 7246.62 | 7204.33 |
31 | 11.06 | 6961.54 | 6905.58 | 8.58 | 6941.13 | 6905.58 | 11.06 | 6961.54 | 6905.58 | 14.19 | 7021.95 | 6905.58 |
31 | 21.26 | 6876.84 | 6576.74 | 17.30 | 6810.27 | 6576.74 | 21.26 | 6876.85 | 6576.74 | 23.88 | 6975.15 | 6576.74 |
31 | 33.25 | 6480.31 | 5751.74 | 29.09 | 6358.84 | 5751.74 | 33.25 | 6480.29 | 5751.74 | 35.14 | 6600.78 | 5751.74 |
31 | 40.48 | 4861.54 | 4009.61 | 35.82 | 4724.52 | 4009.61 | 40.48 | 4861.53 | 4009.61 | 42.33 | 4979.20 | 4009.61 |
31 | 44.06 | 4702.36 | 3729.19 | 39.64 | 4551.83 | 3729.19 | 44.06 | 4702.35 | 3729.19 | 45.79 | 4826.01 | 3729.19 |
Number of Days per Period | Liu and Jordan (Isotropic Model) | Badescu (Isotropic Model) | Hay and Davies (Anisotropic Model) | HDKR (Anisotropic Model) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Tilt Angle (°) | IT Wh/m2/Day | Ig Wh/m2/Day | Tilt Angle (°) | IT Wh/m2/Day | Ig Wh/m2/Day | Tilt Angle (°) | IT Wh/m2/Day | Ig Wh/m2/Day | Tilt Angle (°) | IT Wh/m2/Day | Ig Wh/m2/Day | |
91 | 33.24 | 5456.56 | 4811.00 | 27.86 | 5333.55 | 4811.00 | 33.24 | 5456.55 | 4811.00 | 35.59 | 5576.79 | 4811.00 |
91 | 7.00 | 6707.71 | 6674.63 | 5.16 | 6698.97 | 6674.63 | 7.00 | 6707.71 | 6674.63 | 10.64 | 6752.15 | 6674.63 |
91 | 12.06 | 6970.29 | 6875.30 | 9.31 | 6945.62 | 6875.30 | 12.06 | 6970.29 | 6875.30 | 15.24 | 7036.64 | 6875.30 |
92 | 39.66 | 5397.41 | 4475.29 | 35.26 | 5256.53 | 4475.29 | 39.66 | 5397.40 | 4475.29 | 41.45 | 5520.53 | 4475.29 |
Number of Days per Period = 12 | Liu and Jordan (Isotropic Model) | Badescu (Isotropic Model) | Hay and Davies (Anisotropic Model) | HDKR (Anisotropic Model) |
---|---|---|---|---|
Power (W) | Power (W) | Power (W) | Power (W) | |
30 | 412.20 | 399.54 | 412.19 | 422.80 |
30 | 450.91 | 440.28 | 450.91 | 460.94 |
30 | 477.84 | 471.65 | 477.83 | 486.02 |
30 | 448.82 | 446.96 | 448.82 | 453.81 |
30 | 548.75 | 548.29 | 548.75 | 551.74 |
30 | 563.78 | 563.68 | 563.78 | 565.56 |
30 | 547.64 | 547.37 | 547.64 | 550.14 |
31 | 532.30 | 530.74 | 532.30 | 536.91 |
31 | 530.09 | 524.96 | 530.09 | 537.66 |
31 | 512.28 | 502.68 | 512.28 | 521.79 |
31 | 391.78 | 380.74 | 391.77 | 401.25 |
31 | 387.55 | 375.14 | 387.54 | 397.73 |
Number of Days per Period = 4 | Liu and Jordan (Isotropic Model) | Badescu (Isotropic Model) | Hay and Davies (Anisotropic Model) | HDKR (Anisotropic Model) |
---|---|---|---|---|
Power (W) | Power (W) | Power (W) | Power (W) | |
91 | 445.39 | 435.35 | 445.39 | 455.19 |
91 | 521.76 | 521.07 | 521.75 | 525.21 |
91 | 533.26 | 531.37 | 533.26 | 538.33 |
92 | 435.52 | 424.15 | 435.51 | 445.44 |
Parameters | Value |
---|---|
1 KW | |
80% | |
1 KW |
Number of Days per Period | Liu and Jordan (Isotropic Model) | Badescu (Isotropic Model) | Hay and Davies (Anisotropic Model) | HDKR (Anisotropic Model) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Tilt Angle (°) | IT Wh/m2/Day | Ig Wh/m2/Day | Tilt Angle (°) | IT Wh/m2/Day | Ig Wh/m2/Day | Tilt Angle (°) | IT Wh/m2/Day | Ig Wh/m2/Day | Tilt Angle (°) | IT Wh/m2/Day | Ig Wh/m2/Day | |
30 | 40.34 | 5550.26 | 4497.97 | 37.21 | 5434.30 | 4497.97 | 40.34 | 5550.25 | 4497.97 | 41.68 | 5653.13 | 4497.97 |
30 | 33.16 | 6138.95 | 5349.87 | 29.88 | 6043.68 | 5349.87 | 33.16 | 6138.94 | 5349.87 | 34.70 | 6234.67 | 5349.87 |
30 | 22.41 | 6719.20 | 6367.9 | 19.80 | 6668.88 | 6367.9 | 22.40 | 6718.90 | 6367.9 | 24.11 | 6789.64 | 6367.9 |
30 | 10.90 | 6714.87 | 6551.4 | 9.25 | 6700.71 | 6551.4 | 10.90 | 6714.87 | 6551.4 | 13.05 | 6756.39 | 6551.4 |
30 | 2.09 | 6954.51 | 6888.5 | 1.76 | 6953.95 | 6888.5 | 2.09 | 6954.51 | 6888.5 | 4.38 | 6966.44 | 6888.5 |
30 | −1.62 | 7141.19 | 7171.53 | −1.36 | 7140.85 | 7171.53 | −1.62 | 7141.19 | 7171.53 | 0.68 | 7139.41 | 7171.53 |
30 | 0.51 | 7390.36 | 7405.53 | 0.43 | 7390.32 | 7405.53 | 0.51 | 7390.36 | 7405.53 | 2.55 | 7395.79 | 7405.53 |
31 | 7.67 | 6725.05 | 6828.32 | 6.40 | 6717.52 | 6828.32 | 7.67 | 6725.05 | 6828.32 | 10.03 | 6757.72 | 6828.32 |
31 | 18.44 | 6621.52 | 6335.68 | 15.93 | 6583.96 | 6335.68 | 18.44 | 6621.53 | 6335.68 | 20.40 | 6685.21 | 6335.68 |
31 | 29.71 | 6046.20 | 5535.23 | 26.25 | 5963.04 | 5535.23 | 29.71 | 6046.19 | 5535.23 | 31.45 | 6137.02 | 5535.23 |
31 | 38.57 | 5750.53 | 4725.58 | 35.37 | 5638.10 | 4725.58 | 38.57 | 5750.52 | 4725.58 | 39.96 | 5852.74 | 4725.58 |
31 | 42.28 | 5228.69 | 4138.61 | 39.21 | 5110.61 | 4138.61 | 42.28 | 5228.68 | 4138.61 | 43.58 | 5331.02 | 4138.61 |
Number of Days per Period | Liu and Jordan (Isotropic Model) | Badescu (Isotropic Model) | Hay and Davies (Anisotropic Model) | HDKR (Anisotropic Model) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Tilt Angle (°) | IT Wh/m2/Day | Ig Wh/m2/Day | Tilt Angle (°) | IT Wh/m2/Day | Ig Wh/m2/Day | Tilt Angle (°) | IT Wh/m2/Day | Ig Wh/m2/Day | Tilt Angle (°) | IT Wh/m2/Day | Ig Wh/m2/Day | |
91 | 31.99 | 6138.21 | 5401.20 | 28.80 | 6049.91 | 5401.20 | 31.99 | 6138.20 | 5401.20 | 33.53 | 6229.41 | 5401.20 |
91 | 3.80 | 6922.12 | 6910.59 | 3.20 | 6920.30 | 6910.59 | 3.80 | 6922.12 | 6910.59 | 6.06 | 6940.09 | 6910.59 |
91 | 9.07 | 6872.82 | 6821.79 | 7.71 | 6862.87 | 6821.79 | 9.07 | 6872.82 | 6821.79 | 11.21 | 6908.37 | 6821.79 |
92 | 36.87 | 5659.27 | 4785.77 | 33.48 | 5552.23 | 4785.77 | 36.87 | 5659.26 | 4785.77 | 38.36 | 5759.03 | 4785.77 |
Number of Days per Period = 12 | Liu and Jordan (Isotropic Model) | Badescu (Isotropic Model) | Hay and Davies (Anisotropic Model) | HDKR (Anisotropic Model) |
---|---|---|---|---|
Power (W) | Power (W) | Power (W) | Power (W) | |
30 | 448.92 | 439.55 | 448.92 | 457.23 |
30 | 493.29 | 485.64 | 493.29 | 500.97 |
30 | 536.75 | 532.73 | 536.72 | 542.37 |
30 | 529.36 | 528.25 | 529.36 | 532.63 |
30 | 537.56 | 537.51 | 537.56 | 538.48 |
30 | 544.69 | 544.67 | 544.69 | 544.56 |
30 | 569.70 | 569.70 | 569.70 | 570.12 |
31 | 515.86 | 515.28 | 515.86 | 518.36 |
31 | 509.58 | 506.70 | 509.58 | 514.48 |
31 | 472.46 | 465.97 | 472.46 | 479.55 |
31 | 460.06 | 451.07 | 460.06 | 468.23 |
31 | 425.34 | 415.74 | 425.33 | 433.65 |
Number of Days per Period = 4 | Liu and Jordan (Isotropic Model) | Badescu (Isotropic Model) | Hay and Davies (Anisotropic Model) | HDKR (Anisotropic Model) |
---|---|---|---|---|
Power (W) | Power (W) | Power (W) | Power (W) | |
91 | 493.31 | 486.22 | 493.31 | 500.64 |
91 | 536.24 | 536.10 | 536.24 | 537.63 |
91 | 528.65 | 527.89 | 528.65 | 531.38 |
92 | 451.81 | 443.27 | 451.81 | 459.77 |
NP Number of Days per Period | Liu and Jordan (Isotropic Model) | Badescu (Isotropic Model) | Hay and Davies (Anisotropic Model) | HDKR (Anisotropic Model) | Liu and Jordan (Isotropic Model) | Badescu (Isotropic Model) | Hay and Davies (Anisotropic Model) | HDKR (Anisotropic Model) |
---|---|---|---|---|---|---|---|---|
IT (Wh/m2/Day) | IT (Wh/m2/Day) | IT (Wh/m2/Day) | IT (Wh/m2/Day) | IT (Wh/m2/Year) | IT (Wh/m2/Year) | IT (Wh/m2/Year) | IT (Wh/m2/Year) | |
365 | 6155.648 | 6088.21 | 6155.64 | 6235.813 | 2,246,811.52 | 2,222,196.65 | 2,246,810.06 | 2,276,071.74 |
12 | 6136.5 | 6062.31 | 6136.49 | 6222.45 | 2,239,822.5 | 2,212,743.15 | 2,239,818.85 | 2,271,194.25 |
4 | 6132.99 | 6058.67 | 6132.99 | 6221.53 | 2,238,541.35 | 2,211,414.55 | 2,238,541.35 | 2,270,858.45 |
NP Number of Days per Period | Liu and Jordan (Isotropic Model) | Badescu (Isotropic model) | Hay and Davies (Anisotropic Model) | HDKR (Anisotropic Model) | Liu and Jordan (Isotropic Model) | Badescu (Isotropic Model) | Hay and Davies (Anisotropic Model) | HDKR (Anisotropic Model) |
---|---|---|---|---|---|---|---|---|
IT (Wh/m2/Day) | IT (Wh/m2/Day) | IT (Wh/m2/Day) | IT (Wh/m2/Day) | IT (Wh/m2/Year) | IT (Wh/m2/Year) | IT (Wh/m2/Year) | IT (Wh/m2/Year) | |
365 | 6425.03 | 6374.5 | 6425.03 | 6482.386 | 2,345,136.315 | 2,326,692.5 | 2,345,137.045 | 2,366,070.89 |
12 | 6415.11 | 6362.16 | 6415.08 | 6474.93 | 2,341,515.15 | 2,322,188.4 | 2,341,504.2 | 2,363,349.45 |
4 | 6398.11 | 6346.32 | 6398.10 | 6459.22 | 2,335,310.15 | 2,316,406.8 | 2,335,306.5 | 2,357,615.3 |
DHAHRAN | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
NP | Liu and Jordan Model | Badescu Model | Hay and Davies Model | HDKR Model | ||||||||
86.77 | 40.77 | Optimum | 86.77 | 40.77 | Optimum | 86.77 | 40.77 | Optimum | 85.77 | 40.77 | Optimum | |
365 | 3579.778 | 5773.695 | 6155.648 | 3513.79 | 5545.609 | 6088.21 | 3579.755 | 5773.691 | 6155.644 | 3697.4 | 5916.131 | 6235.813 |
12 | 3571.596 | 5763.431 | 6136.5 | 3505.581 | 5535.251 | 6062.31 | 3571.591 | 5763.416 | 6136.49 | 3694.412 | 5911.187 | 6222.45 |
4 | 3606.995 | 5789.014 | 6132.99 | 3541.079 | 5561.18 | 6058.67 | 3606.991 | 5789.009 | 6132.99 | 3733.402 | 5937.629 | 6221.53 |
MAKKAH | ||||||||||||
NP | Liu and Jordan Model | Badescu Model | Hay and Davies Model | HDKR Model | ||||||||
90 | 45.62 | Optimum | 90 | 45.62 | Optimum | 90 | 45.62 | Optimum | 90 | 45.62 | Optimum | |
365 | 3043.586 | 5732.079 | 6425.031 | 3043.586 | 5553.584 | 6374.5 | 3043.583 | 5732.08 | 6425.033 | 3117.356 | 5847.409 | 6482.386 |
12 | 3044.018 | 5733.385 | 6415.11 | 3044.018 | 5554.681 | 6362.16 | 3044.021 | 5733.353 | 6415.082 | 3119.575 | 5851.851 | 6474.95 |
4 | 3052.534 | 5759.167 | 6398.105 | 3052.534 | 5580.653 | 6346.32 | 3052.531 | 5759.162 | 6398.1 | 3130.719 | 5877.922 | 6459.225 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.S.; Ramli, M.A.M.; Sindi, H.F.; Hidayat, T.; Bouchekara, H.R.E.H. Estimation of Solar Radiation on a PV Panel Surface with an Optimal Tilt Angle Using Electric Charged Particles Optimization. Electronics 2022, 11, 2056. https://doi.org/10.3390/electronics11132056
Khan MS, Ramli MAM, Sindi HF, Hidayat T, Bouchekara HREH. Estimation of Solar Radiation on a PV Panel Surface with an Optimal Tilt Angle Using Electric Charged Particles Optimization. Electronics. 2022; 11(13):2056. https://doi.org/10.3390/electronics11132056
Chicago/Turabian StyleKhan, Muhammad Saud, Makbul A. M. Ramli, Hatem Faiz Sindi, Taufal Hidayat, and Houssem R. E. H. Bouchekara. 2022. "Estimation of Solar Radiation on a PV Panel Surface with an Optimal Tilt Angle Using Electric Charged Particles Optimization" Electronics 11, no. 13: 2056. https://doi.org/10.3390/electronics11132056
APA StyleKhan, M. S., Ramli, M. A. M., Sindi, H. F., Hidayat, T., & Bouchekara, H. R. E. H. (2022). Estimation of Solar Radiation on a PV Panel Surface with an Optimal Tilt Angle Using Electric Charged Particles Optimization. Electronics, 11(13), 2056. https://doi.org/10.3390/electronics11132056