Automatic Rice Disease Detection and Assistance Framework Using Deep Learning and a Chatbot
Abstract
:1. Introduction
1.1. Background Study
1.1.1. Brown Spot
- Seedlings have yellow-brown lesions that may destroy primary and secondary leaves.
- Lesions can be seen on the leaves, which are originally dark brown or purple-brown in colour, during the tillering stage.
1.1.2. Leaf Blast
- White to grey lesions appears initially, they are accompanied by dark green borders.
- Lesions on the leaves that are older are oval or spindle-shaped, with grey centres and reddish-brown edges.
1.1.3. Hispa
- Presence of irregular white patches. These patches are translucent and are parallel to the leaf veins.
- Whitish and membranous leaves.
1.2. Related Work
1.3. Research Contribution
- Developed a mobile application (E-crop doctor) that uses a deep learning-based object detection method to detect diseases in paddy plants and suggests prominent ways to cure them.
- Developed a user-friendly chatbot (docCrop) to help and assist the farmers 24 × 7.
2. Dataset
2.1. Image Acquisition
- On-field images
- Laboratory images
2.2. Data Augmentation and Pre-Processing
- Auto Orientation: This pre-processing step was used to make all the images orient in perfect vertical orientation because YOLOv3 tiny has an orientation adaptation problem [29].
- Resizing: Resizing is performed to make all images compatible for training YOLO models; this is included in pre-processing steps.
- Blur: Blurring was used to pixelate the images because in real-life situations the farmers might not have cameras with the capabilities to capture in high definition.
- Exposure change: Exposure changes were made keeping in mind the real-life conditions where the weather might be sunny, cloudy or the time of capturing the image might be early in the morning or in the late evening hours.
- Rotation: This was conducted to remove any constraints in maintaining orientation while capturing the image.
2.3. Image Dataset
3. Methodology
3.1. Rice Disease Detection Using Deep Learning Models
3.2. Development of Mobile Application (E-Crop Doctor) with the Chatbot (docCrop)
3.3. Evaluation Metrics
4. Experimental Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wagh, R.; Dongre, A.P. Agricultural Sector: Status, Challenges and It’s Role in Indian Economy. J. Commer. Manag. Thought 2016, 7, 209. [Google Scholar] [CrossRef]
- Rohman, A.; Helmiyati, S.; Hapsari, M. Rice in health and nutrition. Int. Food Res. J. 2014, 21, 13–24. [Google Scholar]
- Tudi, M.; Ruan, H.D.; Wang, L.; Lyu, J.; Sadler, R.; Connell, D.; Chu, C.; Phung, D.T. Agriculture Development, Pesticide Application and Its Impact on the Environment. Int. J. Environ. Res. Public Health 2021, 18, 1112. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, S.K.; Kumar, A. A Novel Approach for Rice Plant Diseases Classification with Deep Convolutional Neural Network. Int. J. Inf. Technol. 2021, 14, 185–199. [Google Scholar] [CrossRef]
- Willocquet, L.; Elazegui, F.A.; Castilla, N.; Fernandez, L.; Fischer, K.S.; Peng, S.B.; Teng, P.S.; Srivastava, R.K.; Singh, H.M.; Zhu, D.; et al. Research Priorities for Rice Pest Management in Tropical Asia: A Simulation Analysis of Yield Losses and Management Efficiencies. Phytopathology 2004, 94, 672–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Home—IRRI Rice Knowledge Bank. Available online: http://www.knowledgebank.irri.org/ (accessed on 26 June 2022).
- Zhao, Z.-Q.; Zheng, P.; Xu, S.; Wu, X. Object Detection with Deep Learning: A Review. IEEE Trans. Neural Netw. Learn. Syst. 2018, 30, 3212–3232. [Google Scholar] [CrossRef] [Green Version]
- Rajmohan, R.; Pajany, M.; Rajesh, R.; Raman, D.R.; Prabu, U. Smart paddy crop disease identification and management using deep convolution neural network and SVM classifier. Int. J. Pure Appl. Math. 2018, 118, 255–264. [Google Scholar]
- Ratul, M.A.R.; Elahi, M.T.; Mozaffari, M.H.; Lee, W.S. PS8-Net: A Deep Convolutional Neural Network to Predict the Eight-State Protein Secondary Structure. In Proceedings of the 2020 Digital Image Computing: Techniques and Applications (DICTA), Melbourne, Australia, 29 November–2 December 2020. [Google Scholar] [CrossRef]
- Schölkopf, B. SVMs—A Practical Consequence of Learning Theory. IEEE Intell. Syst. Their Appl. 1998, 13, 18–21. [Google Scholar] [CrossRef] [Green Version]
- Rish, I. An Empirical Study of the Naive Bayes Classifier. In IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence; 2001; Volume 3, pp. 41–46. Available online: https://www.semanticscholar.org/paper/An-empirical-study-of-the-naive-Bayes-classifier-Watson/2825733f97124013e8841b3f8a0f5bd4ee4af88a (accessed on 1 June 2022).
- Gayathri Devi, T.; Neelamegam, P. Image Processing Based Rice Plant Leaves Diseases in Thanjavur, Tamilnadu. Clust. Comput. 2019, 22, 13415–13428. [Google Scholar] [CrossRef]
- Prajapati, H.B.; Shah, J.P.; Dabhi, V.K. Detection and Classification of Rice Plant Diseases. Intell. Decis. Technol. 2017, 11, 357–373. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Mukherjee, A.; Phadikar, S. A Deep Learning Approach for the Classification of Rice Leaf Diseases. In Advances in Intelligent Systems and Computing; Springer: Berlin/Heidelberg, Germany, 2020; Volume 1109, pp. 61–69. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollar, P. Focal Loss for Dense Object Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 318–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Redmon, J.; Ali, F. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- He, K.; Gkioxari, G.; Dollar, P.; Girshick, R. Mask R-CNN. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; Institute of Electrical and Electronics Engineers Inc.: Manhattan, NY, USA, 2017; pp. 2980–2988. [Google Scholar]
- Temniranrat, P.; Kiratiratanapruk, K.; Kitvimonrat, A.; Sinthupinyo, W.; Patarapuwadol, S. A System for Automatic Rice Disease Detection from Rice Paddy Images Serviced via a Chatbot. arXiv 2020, arXiv:2011.10823. [Google Scholar] [CrossRef]
- Lu, Y.; Yi, S.; Zeng, N.; Liu, Y.; Zhang, Y. Identification of Rice Diseases Using Deep Convolutional Neural Networks. Neurocomputing 2017, 267, 378–384. [Google Scholar] [CrossRef]
- Ramesh, S.; Vydeki, D. Recognition and Classification of Paddy Leaf Diseases Using Optimized Deep Neural Network with Jaya Algorithm. Inf. Process. Agric. 2020, 7, 249–260. [Google Scholar] [CrossRef]
- Patidar, S.; Pandey, A.; Shirish, B.A.; Sriram, A. Rice Plant Disease Detection and Classification Using Deep Residual Learning. Commun. Comput. Inf. Sci. 2020, 1240, 278–293. [Google Scholar] [CrossRef]
- Rahman, C.R.; Arko, P.S.; Ali, M.E.; Iqbal Khan, M.A.; Apon, S.H.; Nowrin, F.; Wasif, A. Identification and Recognition of Rice Diseases and Pests Using Convolutional Neural Networks. Biosyst. Eng. 2020, 194, 112–120. [Google Scholar] [CrossRef] [Green Version]
- Sibanda; Blessing, K.; Gloria, E.I.; Attlee, M.G. Mobile apps utilising AI for plant disease identification: A systematic review of user reviews. In Proceedings of the 2021 3rd International Multidisciplinary Information Technology and Engineering Conference (IMITEC), Windhoek, Namibia, 23–25 November 2021; IEEE: Manhattan, NY, USA, 2021. [Google Scholar]
- Rupavatharam, S.; Kennepohl, A.; Kummer, B.; Parimi, V. Automated plant disease diagnosis using innovative android App (Plantix) for farmers in Indian state of Andhra Pradesh. Phytopathology 2018, 108. Available online: http://oar.icrisat.org/id/eprint/11014 (accessed on 5 March 2022).
- Kumar, S.; Yadav, D.; Gupta, H.; Verma, O.P.; Ansari, I.A.; Ahn, C.W. A Novel YOLOv3 Algorithm-Based Deep Learning Approach for Waste Segregation: Towards Smart Waste Management. Electron 2020, 10, 14. [Google Scholar] [CrossRef]
- Kumar, S.; Gupta, H.; Yadav, D.; Ansari, I.A.; Verma, O.P. YOLOv4 Algorithm for the Real-Time Detection of Fire and Personal Protective Equipments at Construction Sites. Multimed. Tools Appl. 2021, 81, 22163–22183. [Google Scholar] [CrossRef]
- Shorten, C.; Khoshgoftaar, T.M. A Survey on Image Data Augmentation for Deep Learning. J. Big Data 2019, 6, 60. [Google Scholar] [CrossRef]
- Lei, J.; Gao, C.; Hu, J.; Gao, C.; Sang, N. Orientation Adaptive YOLOV3 for Object Detection in Remote Sensing Images. In Proceedings of the Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), November 2019; Springer Science and Business Media Deutschland GmbH: Berlin/Heidelberg, Germany, 2019; Volume 11857, pp. 586–597. [Google Scholar]
- Tzutalin/LabelImg: ? LabelImg Is a Graphical Image Annotation Tool and Label Object Bounding Boxes in Images. Available online: https://github.com/tzutalin/labelImg (accessed on 23 November 2021).
- AI Chatbot for Customer Service Automation|Kommunicate, (n.d.). Available online: https://www.kommunicate.io/ (accessed on 13 January 2022).
- Gupta, H.; Varshney, H.; Sharma, T.K.; Pachauri, N.; Verma, O.P. Comparative Performance Analysis of Quantum Machine Learning with Deep Learning for Diabetes Prediction. Complex Intell. Syst. 2021, 1, 1–15. [Google Scholar] [CrossRef]
- Gupta, H.; Verma, O.P. Monitoring and Surveillance of Urban Road Traffic Using Low Altitude Drone Images: A Deep Learning Approach. Multimed. Tools Appl. 2021, 81, 19683–19703. [Google Scholar] [CrossRef]
- Shahi, T.B.; Sitaula, C.; Neupane, A.; Guo, W. Fruit Classification Using Attention-Based MobileNetV2 for Industrial Applications. PLoS ONE 2022, 17, e0264586. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, H.; Peng, Z. Rice Diseases Detection and Classification Using Attention Based Neural Network and Bayesian Optimization. Expert Syst. Appl. 2021, 178, 114770. [Google Scholar] [CrossRef]
- Bari, B.S.; Islam, M.N.; Rashid, M.; Hasan, M.J.; Razman, M.A.M.; Musa, R.M.; Nasir, A.F.A.; Majeed, A.P.P.A. A Real-Time Approach of Diagnosing Rice Leaf Disease Using Deep Learning-Based Faster R-CNN Framework. PeerJ Comput. Sci. 2021, 7, e432. [Google Scholar] [CrossRef]
- Kiratiratanapruk, K.; Temniranrat, P.; Sinthupinyo, W.; Marukatat, S.; Patarapuwadol, S. Automatic Detection of Rice Disease in Images of Various Leaf Sizes. arXiv 2022, arXiv:2206.07344. [Google Scholar]
S. No. | Author(s) | Model | Accuracy (%) |
---|---|---|---|
1. | Rajmohan et al. [8] | CNN + SVM | 87.50 |
2. | Gayathri Devi et al. [12] | SVM | 98.63 |
3. | Prajapati et al. [13] | SVM | 73.33 |
4. | Bhattacharya et al. [14] | CNN | 78.44 |
5. | Temniranrat et al. [19] | YOLOv3 | 89.10 |
6. | Lu et al. [20] | CNN | 95.48 |
7. | Ramesh et al. [21] | JOA + CNN | 94.25 |
8. | Patidar et al. [22] | ReNN | 95.38 |
9. | Rahman et al. [23] | CNN | 93.30 |
Parameter | Amount |
---|---|
Auto Orientation | Applied |
Resizing | 416 × 416 |
Blur | Up to 1 px |
Exposure change | Between −15% and 15% |
Rotation | ±15 degree |
Brightness | Between −28% to 28% |
Name of Disease | Total Number of Instances | Total Number of Images | Training Images | Validation Images | Test Images |
---|---|---|---|---|---|
Brown spot | 919 | 275 | 248 | 13 | 14 |
Hispa | 894 | 229 | 206 | 11 | 12 |
Leaf blast | 623 | 258 | 232 | 13 | 13 |
Total | 2436 | 762 | 686 | 37 | 39 |
Parameter | YOLOv3 Tiny | YOLOv4 Tiny |
---|---|---|
Width | 416 | 416 |
Height | 416 | 416 |
Batch | 64 | 64 |
Subdivisions | 16 | 24 |
Channels | 3 | 3 |
Momentum | 0.9 | 0.9 |
Decay | 0.0005 | 0.0005 |
Learning rate | 0.001 | 0.00261 |
Maximum number of batches | 6000 | 6000 |
Policy | steps | steps |
Steps | 4800, 5400 | 4800, 5400 |
Scale | 0.1, 0.1 | 0.1, 0.1 |
Classes | 3 | 3 |
Filters | (4 + 1 + 3) × 3 = 24 | (4 + 1 + 3) × 3 = 24 |
Model Version | Iterations | Classes AP (%) | mAP (%) | P | R | F1 Score | IoU (%) | Loss | ||
---|---|---|---|---|---|---|---|---|---|---|
Brown Spot | Hispa | Leaf Blast | ||||||||
YOLOv3 tiny | 1000 | 23.6 | 55.90 | 56.67 | 45.73 | 0.66 | 0.25 | 0.36 | 44.75 | 2.87 |
YOLOv4 tiny | 7.6 | 27.48 | 57.37 | 30.82 | 0.39 | 0.10 | 0.16 | 27.13 | 1.84 | |
YOLOv3 tiny | 2000 | 37.52 | 66.20 | 50.00 | 51.25 | 0.68 | 0.41 | 0.51 | 45.63 | 2.05 |
YOLOv4 tiny | 41.38 | 60.74 | 49.36 | 50.50 | 0.59 | 0.49 | 0.54 | 40.34 | 1.35 | |
YOLOv3 tiny | 3000 | 35.99 | 81.90 | 91.67 | 69.98 | 0.74 | 0.47 | 0.57 | 58.22 | 1.84 |
YOLOv4 tiny | 58.11 | 85.38 | 99.10 | 81.60 | 0.71 | 0.65 | 0.68 | 50.09 | 1.05 | |
YOLOv3 tiny | 4000 | 60.63 | 82.41 | 99.20 | 81.01 | 0.65 | 0.74 | 0.69 | 45.19 | 1.63 |
YOLOv4 tiny | 70.39 | 84.39 | 99.30 | 84.93 | 0.77 | 0.71 | 0.74 | 54.74 | 0.75 | |
YOLOv3 tiny | 5000 | 62.16 | 90.30 | 99.10 | 84.16 | 0.73 | 0.79 | 0.76 | 52.28 | 1.55 |
YOLOv4 tiny | 82.49 | 92.97 | 99.30 | 91.82 | 0.81 | 0.85 | 0.83 | 59.86 | 0.58 | |
YOLOv3 tiny | 6000 | 67.28 | 89.02 | 99.20 | 85.43 | 0.77 | 0.72 | 0.74 | 55.11 | 1.41 |
YOLOv4 tiny | 97.20 | 98.45 | 99.48 | 95.38 | 0.88 | 0.89 | 0.89 | 66.29 | 0.55 |
Model Version | Classes AP (%) | mAP (%) | P | R | F1 Score | IoU (%) | ||
---|---|---|---|---|---|---|---|---|
Brown Spot | Hispa | Leaf Blast | ||||||
YOLOv3 tiny | 65.38 | 84.31 | 98.17 | 82.79 | 0.72 | 0.70 | 0.74 | 53.28 |
YOLOv4 tiny | 96.20 | 97.78 | 98.36 | 97.36 | 0.86 | 0.88 | 0.87 | 65.79 |
Test Image | Disease Detections | Prediction Probability (in %) | Prediction Time (in Milliseconds) | ||
---|---|---|---|---|---|
YOLOv3 Tiny | YOLOv4 Tiny | YOLOv3 Tiny | YOLOv4 Tiny | ||
1 | Brown spot | 59 | 45 | 2.856 | 5.158 |
Brown spot | 42 | 85 | |||
Brown spot | 26 | 46 | |||
Brown spot | 63 | 93 | |||
Brown spot | NA | 85 | |||
2 | Leaf blast | 41 | 39 | 2.928 | 5.167 |
Leaf blast | 68 | 99 | |||
Leaf blast | NA | 97 | |||
3 | Hispa | 59 | 97 | 2.915 | 5.166 |
4 | Leaf blast | 55 | 86 | 2.885 | 5.216 |
Brown spot | 36 | 96 | |||
Brown spot | 98 | 99 | |||
Leaf blast | 74 | 89 | |||
Leaf blast | 97 | 99 | |||
5 | Hispa | NA | 57 | 2.894 | 5.138 |
S. No. | Author(s) | Model | Class Wise Accuracy (%) | mAP (%) | Overall Accuracy (%) | ||
---|---|---|---|---|---|---|---|
Brown Spot | Leaf Blast | Hispa | |||||
1. | Kiratiratanapruk et al. [37] | YOLOv4 | x | x | x | 94.16 | x |
2. | Gayathri et al. [12] | SVM | 98.30 | 96.70 | x | x | 98.63 |
3. | Lu et al. [20] | CNN | x | x | x | x | 95.48 |
4. | Ramesh et al. [21] | JOA + CNN | 90.57 | 98.90 | x | x | 94.25 |
5. | Rahman et al. [23] | CNN | x | x | x | x | 93.30 |
6. | Wang et al. [35] | NN-BO | 98.00 | 93.70 | 91.11 | x | 94.65 |
7. | Bari et al. [36] | Faster R-CNN | 98.85 | 98.09 | 99.17 | x | x |
8. | Proposed * | YOLOv3 tiny | 76.34 | 85.19 | 93.38 | 82.79 | 85.37 |
9. | Proposed * | YOLOv4 tiny | 98.78 | 99.31 | 94.37 | 97.36 | 98.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jain, S.; Sahni, R.; Khargonkar, T.; Gupta, H.; Verma, O.P.; Sharma, T.K.; Bhardwaj, T.; Agarwal, S.; Kim, H. Automatic Rice Disease Detection and Assistance Framework Using Deep Learning and a Chatbot. Electronics 2022, 11, 2110. https://doi.org/10.3390/electronics11142110
Jain S, Sahni R, Khargonkar T, Gupta H, Verma OP, Sharma TK, Bhardwaj T, Agarwal S, Kim H. Automatic Rice Disease Detection and Assistance Framework Using Deep Learning and a Chatbot. Electronics. 2022; 11(14):2110. https://doi.org/10.3390/electronics11142110
Chicago/Turabian StyleJain, Siddhi, Rahul Sahni, Tuneer Khargonkar, Himanshu Gupta, Om Prakash Verma, Tarun Kumar Sharma, Tushar Bhardwaj, Saurabh Agarwal, and Hyunsung Kim. 2022. "Automatic Rice Disease Detection and Assistance Framework Using Deep Learning and a Chatbot" Electronics 11, no. 14: 2110. https://doi.org/10.3390/electronics11142110
APA StyleJain, S., Sahni, R., Khargonkar, T., Gupta, H., Verma, O. P., Sharma, T. K., Bhardwaj, T., Agarwal, S., & Kim, H. (2022). Automatic Rice Disease Detection and Assistance Framework Using Deep Learning and a Chatbot. Electronics, 11(14), 2110. https://doi.org/10.3390/electronics11142110