Feasible, Robust and Reliable Automation and Control for Autonomous Systems
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pagliarini, L.; Lund, H.H. The future of Robotics Technology. J. Robot. Netw. Artif. Life 2017, 3, 270–273. [Google Scholar] [CrossRef] [Green Version]
- Herrmann, A.; Walter, B.; Stadler, R. Autonomous Driving: How the Driverless Revolution Will Change the World; Emerald Group Publishing: Bingley, UK, 2018. [Google Scholar]
- Hernandez-Barragan, J.; Rios, J.D.; Alanis, A.Y.; Lopez-Franco, C.; Gomez-Avila, J.; Arana-Daniel, N. Adaptive Single Neuron Anti-Windup PID Controller Based on the Extended Kalman Filter Algorithm. Electronics 2020, 9, 636. [Google Scholar] [CrossRef]
- Deliparaschos, K.M.; Michail, K.; Zolotas, A.C. Facilitating Autonomous Systems with AI-Based Fault Tolerance and Computational Resource Economy. Electronics 2020, 9, 788. [Google Scholar] [CrossRef]
- Strawa, N.; Ignatyev, D.I.; Zolotas, A.C.; Tsourdos, A. On-Line Learning and Updating Unmanned Tracked Vehicle Dynamics. Electronics 2021, 10, 187. [Google Scholar] [CrossRef]
- Meng, Q.; Zhao, X.; Hu, C.; Sun, Z.-Y. High Velocity Lane Keeping Control Method Based on the Non-Smooth Finite-Time Control for Electric Vehicle Driven by Four Wheels Independently. Electronics 2021, 10, 760. [Google Scholar] [CrossRef]
- Rumetshofer, J.; Stolz, M.; Watzenig, D. A Generic Interface Enabling Combinations of State-of-the-Art Path Planning and Tracking Algorithms. Electronics 2021, 10, 788. [Google Scholar] [CrossRef]
- Tran, G.; Pham, T.-P.; Sename, O.; Costa, E.; Gaspar, P. Integrated Comfort-Adaptive Cruise and Semi-Active Suspension Control for an Autonomous Vehicle: An LPV Approach. Electronics 2021, 10, 813. [Google Scholar] [CrossRef]
- Rudigier, M.; Nestlinger, G.; Tong, K.; Solmaz, S. Development and Verification of Infrastructure-Assisted Automated Driving Functions. Electronics 2021, 10, 2161. [Google Scholar] [CrossRef]
- Selvaraj, Y.; Farooqui, A.; Panahandeh, G.; Ahrendt, W.; Fabian, M. Automatically Learning Formal Models from Autonomous Driving Software. Electronics 2022, 11, 643. [Google Scholar] [CrossRef]
- Pang, H.; Liu, M.; Hu, C.; Liu, N. Practical Nonlinear Model Predictive Controller Design for Trajectory Tracking of Unmanned Vehicles. Electronics 2022, 11, 1110. [Google Scholar] [CrossRef]
- Nestlinger, G.; Rumetshofer, J.; Solmaz, S. Leader-Based Trajectory Following in Unstructured Environments—From Concept to Real-World Implementation. Electronics 2022, 11, 1866. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamid, U.Z.A.; Hu, C.; Zolotas, A. Feasible, Robust and Reliable Automation and Control for Autonomous Systems. Electronics 2022, 11, 2126. https://doi.org/10.3390/electronics11142126
Hamid UZA, Hu C, Zolotas A. Feasible, Robust and Reliable Automation and Control for Autonomous Systems. Electronics. 2022; 11(14):2126. https://doi.org/10.3390/electronics11142126
Chicago/Turabian StyleHamid, Umar Zakir Abdul, Chuan Hu, and Argyrios Zolotas. 2022. "Feasible, Robust and Reliable Automation and Control for Autonomous Systems" Electronics 11, no. 14: 2126. https://doi.org/10.3390/electronics11142126
APA StyleHamid, U. Z. A., Hu, C., & Zolotas, A. (2022). Feasible, Robust and Reliable Automation and Control for Autonomous Systems. Electronics, 11(14), 2126. https://doi.org/10.3390/electronics11142126