MultiSec: A Multi-Protocol Security Forwarding Mechanism Based on Programmable Data Plane
Abstract
:1. Introduction
- We analyze the problem that existing protocol conversion mechanisms can only process specific protocols and propose a programmable multi-protocol conversion mechanism. By reconfiguring the programmable parser and designing the packet header-caching method, this mechanism realizes the interconnection between heterogeneous networks with multiple addressing methods and the Internet.
- Encryption, decryption, and authentication functions are added to the P4-based programmable data plane. We integrate protocol conversion and secure forwarding functions by designing a recirculation mechanism. Security gateway configuration files are leveraged in the Software Defined Network (SDN) controller to distribute and update Security Association (SA) dynamically.
- We build a heterogeneous network test environment with the help of a virtual heterogeneous network. We evaluate the implementation of the PPK P4 software switch. The experiments show that the goodput increases by 20 times, and transmission latency is reduced by two orders of magnitude through hardware acceleration.
2. Relevant Work and Background
2.1. Protocol Conversion Mechanism
2.2. Encrypted Communication Technology and Mechanism
2.3. Application of Programmable Data Plane
2.4. Programmable Data Plane
3. MultiSec Design
3.1. Overview
3.2. Framework
- Parser: used to extract the input packet header.
- SPD module: Matches given packets with SPD rules and determines the corresponding security policy. The packets that need to be encrypted are sent to the C&E module.
- C&E module: integrates encryption and conversion of the private protocol to the IP protocol and is implemented in an extern.
- R&D module: integrates the decryption and conversion of IP protocol to the original protocol (protocol restoration) and is implemented in another extern.
3.3. Programmable Protocol Conversion Mechanism
3.4. The Integration of Protocol Conversion and Secure Forwarding
3.4.1. Recirculation Mechanism
Algorithm 1: Recirculation mechanism |
Input: encrypted packet |
Output: original packet |
|
3.4.2. Automatically Distribute and Dynamically Update SA
4. Security Analysis and Experimental Evaluation
4.1. Security Analysis
4.2. Prototype Implementation
4.3. Testbed Setup
4.4. Functional Verification
4.5. TCP Goodput
4.6. Latency
4.7. Comparison and Analysis with IPsec
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, L.; Afanasyev, A.; Burke, J.; Jacobson, V.; Claffy, K.; Crowley, P.; Papadopoulos, C.; Wang, L.; Zhang, B. Named data networking. ACM Sigcomm Comput. Commun. Rev. 2014, 44, 66–73. [Google Scholar] [CrossRef]
- Seskar, I.; Nagaraja, K.; Nelson, S.; Raychaudhuri, D. Mobilityfirst future internet architecture project. In Proceedings of the 7th Asian Internet Engineering Conference, Bangkok, Thailand, 9–11 November 2011; pp. 1–3. [Google Scholar]
- Kuhlmorgen, S.; Llatser, I.; Festag, A.; Fettweis, G. Performance evaluation of etsi geonetworking for vehicular ad hoc networks. In Proceedings of the 2015 IEEE 81st Vehicular Technology Conference (VTC Spring), Glasgow, UK, 11–14 May 2015; pp. 1–6. [Google Scholar]
- Shuang, W.; Han, Y. Development and application of intelligent transportation system. J. Inst. Eng. Ser. B 2019, 102, 1191–1200. [Google Scholar]
- IEEE Std 1888.2-2014; IEEE Standard for Ubiquitous Green Community Control Network: Heterogeneous Networks Convergence and Scalability. IEEE: New York, NY, USA, 2014; pp. 1–48.
- Hauser, F.; Häberle, M.; Schmidt, M.; Menth, M. P4-IPsec: Site-to-site and host-to-site VPN with IPsec in P4-based SDN. IEEE Access 2020, 8, 139567–139586. [Google Scholar] [CrossRef]
- Bosshart, P.; Gibb, G.; Kim, H.S.; Varghese, G.; McKeown, N.; Izzard, M.; Mujica, F.; Horowitz, M. Forwarding metamorphosis: Fast programmable match-action processing in hardware for SDN. ACM Sigcomm Comput. Commun. Rev. 2013, 43, 99–110. [Google Scholar] [CrossRef]
- Chole, S.; Fingerhut, A.; Ma, S.; Sivaraman, A.; Vargaftik, S.; Berger, A.; Mendelson, G.; Alizadeh, M.; Chuang, S.T.; Keslassy, I.; et al. drmt: Disaggregated programmable switching. In Proceedings of the Conference of the ACM Special Interest Group on Data Communication, Los Angeles, CA, USA, 21–25 August 2017; pp. 1–14. [Google Scholar]
- Kaljic, E.; Maric, A.; Njemcevic, P.; Hadzialic, M. A survey on data plane flexibility and programmability in software-defined networking. IEEE Access 2019, 7, 47804–47840. [Google Scholar] [CrossRef]
- Tibor, S.; Kuljic, B.; Dukan, P.; Mathe, K.; Peter, O. Realization of protocol conversion for high speed data acquisition system. In Proceedings of the 2009 7th International Symposium on Intelligent Systems and Informatics, Subotica, Serbia, 25–26 September 2009; pp. 341–344. [Google Scholar]
- Kenneally, E. Whos’s liable for insecure networks? Computer 2002, 35, 93–95. [Google Scholar] [CrossRef]
- He, Q.; Yuan, S.; Zhu, L. Modulation domain encrypted transmission based on chaotic sequence for satellite communication. In Proceedings of the 2019 International Symposium on Advanced Electrical and Communication Technologies (ISAECT), Rome, Italy, 27–29 November 2019; pp. 1–6. [Google Scholar]
- Eum, S.h.; Hong, S.k. Development of user protocol converter about Modbus and NMEA0183. J. Korea Inst. Inf. Commun. Eng. 2015, 19, 2584–2589. [Google Scholar] [CrossRef]
- Ananda, M.; Nagarathna, R.; Krishna, L.; Rajeswari, P. Implementation of low cost protocol converter using common media device. In Proceedings of the 2017 International Conference on Innovative Mechanisms for Industry Applications (ICIMIA), Bengaluru, India, 21–23 February 2017; pp. 780–783. [Google Scholar]
- Sinha, R. Conversing at many layers: Multi-layer system-on-chip protocol conversion. In Proceedings of the 2015 20th International Conference on Engineering of Complex Computer Systems (ICECCS), Gold Coast, Australia, 9–11 December 2015; pp. 170–173. [Google Scholar]
- Nie, Y.; Xu, G.; Feng, X. Design of FPGA-based ethernet and G. SHDSL protocol converter. Inf. Technol. 2017, 4, 117–120. [Google Scholar]
- Yukai, L. FC-AE Multi-Protocol Heterogeneous Network Bridge and Related Software Design. Ph.D. Thesis, Zhejiang University, Hangzhou, China.
- Zhiling, W. Research and Design of Multi-Protocol Conversion System Based on FPGA. Ph.D. Thesis, University of Electronic Science and Technology, Chengdu, China, 2018. [Google Scholar]
- Deng, A.; Wang, H. An efficient protocol conversion mechanism between profinet network and IPv6 backhaul network for industrial internet. In Proceedings of the 2021 China Automation Congress (CAC), Beijing, China, 22–24 October 2021; pp. 4792–4796. [Google Scholar]
- Xie, J.; Gao, Q. Design and implementation of embedded protocol conversion gateway for intelligent buildings. In Proceedings of the 2019 IEEE 10th International Conference on Software Engineering and Service Science (ICSESS), Beijing, China, 18–20 October 2019; pp. 1–5. [Google Scholar]
- Derhamy, H.; Eliasson, J.; Delsing, J. IoT interoperability—On-demand and low latency transparent multiprotocol translator. IEEE Internet Things J. 2017, 4, 1754–1763. [Google Scholar] [CrossRef]
- Lixin, M. Research on Key Technologies of Software-Defined Protocol Conversion. Ph.D. Thesis, Strategic Support Force Information Engineering University, Zhengzhou, China, 2020. [Google Scholar]
- Hellwig, M.; Beyer, H.G. A matrix adaptation evolution strategy for constrained real-parameter optimization. In Proceedings of the 2018 IEEE Congress on Evolutionary Computation (CEC), Wellington, New Zealand, 10–13 June 2019; pp. 1–8. [Google Scholar]
- Huasheng, L.; Wendong, W.; Yu, L.; Shiduan, C. A scheme to provide QoS levels in MPLS VPN. J. Beijing Univ. Posts Telecommun. 2004, 27, 98–102. [Google Scholar]
- Jin, Z. Research on High-Performance SSL VPN System Based on DPDK. Master’s Thesis, Huazhong University of Science and Technology, Wuhan, China.
- Guanhua, R. SSL Protocol Research and Optimization Based on TCM. Ph.D. Thesis, Beijing University of Technology, Beijing, China, 2019. [Google Scholar]
- Yuelei, X.; Junsheng, W.; Zhixiang, Z. MACSec security association scheme in trusted computing environment. Comput. Appl. Res. 2019, 36, 6. [Google Scholar]
- Shepherd, S. Continuous authentication by analysis of keyboard typing characteristics. In Proceedings of the European Convention on Security and Detection, Brighton, UK, 16–18 May 1995; pp. 111–114. [Google Scholar]
- De Marcos, L.; Martínez-Herráiz, J.J.; Junquera-Sánchez, J.; Cilleruelo, C.; Pages-Arévalo, C. Comparing machine learning classifiers for continuous authentication on mobile devices by keystroke dynamics. Electronics 2021, 10, 1622. [Google Scholar] [CrossRef]
- Al-Zubaidie, M.; Zhang, Z.; Zhang, J. Ramhu: A new robust lightweight scheme for mutual users authentication in healthcare applications. Secur. Commun. Netw. 2019, 2019. [Google Scholar] [CrossRef]
- Giri, D.; Maitra, T.; Amin, R.; Srivastava, P. An efficient and robust rsa-based remote user authentication for telecare medical information systems. J. Med. Syst. 2015, 39, 1–9. [Google Scholar] [CrossRef]
- Kumar, N.; Kaur, K.; Misra, S.C.; Iqbal, R. An intelligent RFID-enabled authentication scheme for healthcare applications in vehicular mobile cloud. Peer-Peer Netw. Appl. 2016, 9, 824–840. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, N.; Zhang, X.; Zhou, F. A new compact hardware architecture of S-Box for block ciphers AES and SM4. Ieice Electron. Express 2017, 14, 20170358. [Google Scholar] [CrossRef] [Green Version]
- Abdullah, A.M. Advanced encryption standard (AES) algorithm to encrypt and decrypt data. Cryptogr. Netw. Secur. 2017, 16, 1–11. [Google Scholar]
- Ge, G.; Feng, H.; Liu, B.; Zhang, J. Research on video surveillance key management scheme based on identification password. In Proceedings of the 2019 4th International Conference on Mechanical, Control and Computer Engineering (ICMCCE), Hohhot, China, 25–27 October 2019; pp. 741–7415. [Google Scholar]
- Kong, D.; Wang, X.; Zhong, L.; Sha, Y.; Li, Z. Dynamic password token based on SM3 algorithm. In Proceedings of the 2016 International Conference on Audio, Language and Image Processing (ICALIP), Shanghai, China, 11–12 July 2016; pp. 180–184. [Google Scholar]
- Liu, D.; Wang, R.; Zhang, H.; Chen, J.; Liu, X.; Ma, L. Research on terminal security technology of ubiquitous power Internet of Things based on PUF and SM3. In Proceedings of the 2019 IEEE 3rd Conference on Energy Internet and Energy System Integration (EI2), Changsha, China, 8–10 November 2019; pp. 910–915. [Google Scholar]
- Scholz, D.; Oeldemann, A.; Geyer, F.; Gallenmuller, S.; Carle, G. Cryptographic hashing in P4 data planes. In Proceedings of the 2019 ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS), Cambridge, UK, 24–25 September 2019. [Google Scholar]
- Chen, X. Implementing AES encryption on programmable switches via scrambled lookup tables. In Proceedings of the SIGCOMM ’20: Annual Conference of the ACM Special Interest Group on Data Communication on the Applications, Technologies, Architectures, and Protocols for Computer Communication, Virtual Event, USA, 10–14 August 2020. [Google Scholar]
- Hauser, F.; Schmidt, M.; Haberle, M.; Menth, M. P4-MACsec: Dynamic topology monitoring and data layer protection with MACsec in P4-based SDN. IEEE Access 2020, 8, 58845–58858. [Google Scholar] [CrossRef]
- Hauser, F.; Häberle, M.; Schmidt, M.; Menth, M. P4-IPsec: Implementation of IPsec Gateways in P4 with SDN Control for Host-to-Site Scenarios. arXiv. 2019. Available online: https://www.arxiv-vanity.com/papers/1907.03593/ (accessed on 18 June 2022).
- Moghaddam, H.M.; Mosenia, A. Anonymizing masses: Practical light-weight anonymity at the network level. arXiv 2019, arXiv:1911.09642. [Google Scholar]
- Datta, T.; Feamster, N.; Rexford, J.; Wang, L. {spine}: Surveillance protection in the network elements. In Proceedings of the 9th USENIX Workshop on Free and Open Communications on the Internet (FOCI 19), Santa Clara, CA, USA, 13 August 2019. [Google Scholar]
- IEEE Std 1017.1-2021 (Revision of IEEE Std 1017.1-2013); IEEE Recommended Practice for Testing of Electric Submersible Pump Cable. IEEE Standards Association: Piscataway, NJ, USA, 2022; pp. 1–67.
- Suo, S.; Cui, C.; Jian, G.; Kuang, X.; Yang, Y.; Zhao, Y.; Huang, K. Implementation of the high-speed sm4 cryptographic algorithm based on random pseudo rounds. In Proceedings of the 2020 IEEE International Conference on Information Technology, Big Data and Artificial Intelligence (ICIBA), Chongqing, China, 6–8 November 2020; Volume 1, pp. 112–117. [Google Scholar]
Method | Mode | Protocol | Flexibility | Complexity |
---|---|---|---|---|
DMM | Mapping | Fixed | Low | High |
MMID | Mapping | Fixed | Low | High |
PCM | Parameter Matrix | Fixed | Low | High |
PCPDP | Encapsulation | Any | High | Low |
Mechanism | Algorithm | Latency (μs) | Goodput (Mbps) | Protection Range | Access Protocol |
---|---|---|---|---|---|
MultiSec | SM4-DEC | 79.55 | 101.38 | Heterogeneous subnets (LAN) | Multi-protocol |
SM3-AUT | 12.63 | ||||
IPsec | AES-DEC | 104.24 | 98.27 | IP LAN | IP protocol |
MD5-AUT | 6.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Cui, P.; Dong, Y.; Xue, L.; Hu, Y. MultiSec: A Multi-Protocol Security Forwarding Mechanism Based on Programmable Data Plane. Electronics 2022, 11, 2389. https://doi.org/10.3390/electronics11152389
Liu Z, Cui P, Dong Y, Xue L, Hu Y. MultiSec: A Multi-Protocol Security Forwarding Mechanism Based on Programmable Data Plane. Electronics. 2022; 11(15):2389. https://doi.org/10.3390/electronics11152389
Chicago/Turabian StyleLiu, Zeying, Pengshuai Cui, Yongji Dong, Lei Xue, and Yuxiang Hu. 2022. "MultiSec: A Multi-Protocol Security Forwarding Mechanism Based on Programmable Data Plane" Electronics 11, no. 15: 2389. https://doi.org/10.3390/electronics11152389
APA StyleLiu, Z., Cui, P., Dong, Y., Xue, L., & Hu, Y. (2022). MultiSec: A Multi-Protocol Security Forwarding Mechanism Based on Programmable Data Plane. Electronics, 11(15), 2389. https://doi.org/10.3390/electronics11152389