Image Denoising Based on GAN with Optimization Algorithm
Abstract
:1. Introduction
2. Related Work
3. Network Structure Design and Optimization Algorithm
3.1. Whole Network Structure Design
3.2. Optimization Algorithm
- (a)
- First input training data , loss function .
- (b)
- Construct neural network.
- (c)
- Use Formulas (1) and (2) to calculate the output .
- (d)
- Calculate the loss function .
- (e)
- Use Formulas (3) and (5), respectively, to estimate the gradient of loss to weight and noise level.
- (f)
- Update weights and noise levels.
- (g)
- Repeat steps c to f until the parameters meet the requirements of the model.
3.3. Sub-Network Structure Design
4. Experiments and Analyses
4.1. Data Set and Parameter Setting
4.2. Evaluation Index
4.3. Experimental Result and Analysis
4.3.1. Comparison of Classification Accuracy on Different Data Sets
4.3.2. Comparison of PSNR and SSIM on the BDS500 Data Set among Different Methods
4.3.3. Comparison of Visual Perception
4.3.4. FGSM Attack Result
4.3.5. Ablation Experiments and PGD Attack
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumwilaisak, W.; Piriyatharawet, T.; Lasang, P.; Thatphithakkul, N. Image denoising with deep convolutional neural and Multi-Directional long Short-Term memory networks under poisson noise environments. IEEE Access 2020, 8, 86998–87010. [Google Scholar] [CrossRef]
- Tang, C.; Xu, J.; Zhou, Z. Improved curvature filtering method for strong noise image denoising. J. Image Graph. 2019, 24, 26–36. [Google Scholar]
- Li, G.; Li, J.; Fan, H. Adaptive matching pursuit image denoising algorithm. Comput. Sci. 2020, 47, 176–185. [Google Scholar]
- Dabov, K.; Foi, A.; Katkovnik, V.; Egiazarian, K. Image denoising by Sparse 3-D transform-Domain collaborative Filtering. IEEE Trans. Image Process. 2007, 16, 2080–2095. [Google Scholar] [CrossRef] [PubMed]
- Jun, X.; Lei, Z.; Zhang, D. A trilateral weighted sparse coding scheme for real-world image denoising. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; Volume 9, pp. 20–36. [Google Scholar]
- Xie, T.; Li, S.; Sun, B. Hyperspectral images denoising via nonconvex regularized Low-Rank and sparse matrix decomposition. IEEE Trans. Image Process. 2020, 29, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.F. Image denoising based on undecimated discrete wavelet transform. In Proceedings of the 2007 International Conference on Wavelet Analysis and Pattern Recognition, Beijing, China, 2–4 November 2007; pp. 527–531. [Google Scholar]
- Wang, Y.; Ren, W. Image denoising using anisotropic second and fourth order diffusions based on gradient vector convolution. Comput. Sci. Inf. Syst. 2012, 9, 1493–1511. [Google Scholar] [CrossRef]
- Wu, Q.; Ren, W.; Cao, X. Learning interleaved cascade of shrinkage fields for joint image dehazing and denoising. IEEE Trans. Image Process. 2020, 29, 1788–1801. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Zuo, W.; Chen, Y.; Meng, D.; Zhang, L. Beyond a gaussian denoiser: Residual learning of deep CNN for image denoising. IEEE Trans. Image Process. 2017, 26, 3142–3155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, H.; Chen, X.; Tan, V.Y.F.; Yang, W.; Wu, J.; Feng, J. Unsupervised image noise modeling with Self-Consistent GAN. arXiv 2019, arXiv:1906.05762v1. [Google Scholar]
- Yu, S.; Park, B.; Jeong, J. Deep iterative Down-Up CNN for image denoising. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Long Beach, CA, USA, 16–17 June 2017; Volume 6, pp. 2095–2103. [Google Scholar]
- Zhang, K.; Zuo, W.; Zhang, L. FFDNet: Toward a fast and flexible solution for CNN based image denoising. IEEE Trans. Image Process. 2018, 27, 4608–4622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Chen, J.; Chao, H.; Yang, M. Image blind denoising with generative adversarial network based noise modeling. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; Volume 6, pp. 3155–3164. [Google Scholar]
- Dong, W.; Wang, P.; Yin, W.; Shi, G.; Wu, F.; Lu, X. Denoising prior driven deep neural network for image restoration. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 41, 2305–2318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Song, X.; Chen, K. Channel and space attention neural network for image denoising. IEEE Signal Process. Lett. 2021, 28, 424–428. [Google Scholar] [CrossRef]
- Cai, S.; Kang, Z.; Yang, M.; Xiong, X.; Peng, C.; Xiao, M. Image Denoising via Improved Dictionary Learning with Global Structure and Local Similarity Preservations. Symmetry 2018, 10, 167. [Google Scholar] [CrossRef] [Green Version]
- Cai, S.; Liu, K.; Yang, M.; Tang, J.; Xiong, X.; Xiao, M. A new development of non-local image denoising using fixed-point iteration for non-convex ℓp sparse optimization. PLoS ONE 2018, 13, e0208503. [Google Scholar] [CrossRef] [PubMed]
- Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.; Goodfellow, I.; Fergus, R. Intriguing properties of neural networks. Computer Science. arXiv 2014, arXiv:1312.6199v4. [Google Scholar]
- Goodfellow, I.J.; Shlens, J.; Szegedy, C. Explaining and harnessing adversarial examples. Computer and Information Sciences. arXiv 2015, arXiv:1412.6572v3. [Google Scholar]
- Li, X.; Zhang, Z.; Peng, Y. Noise optimization for artificial neural networks. arXiv 2021, arXiv:2102.04450v1. [Google Scholar]
- Lin, W.; Gao, M.; Ruan, C.; Zhong, J. Denoising for intracranial hemorrhage images using autoencoder based on CNN. In Proceedings of the 2021 IEEE International Conference on Computer Science, Electronic Information Engineering and Intelligent Control Technology (CEI), Fuzhou, China, 24–26 September 2021; pp. 520–523. [Google Scholar]
- Zhang, Y.; Tian, Y.; Kong, Y.; Zhong, B.; Fu, Y. Residual dense network for image restoration. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 2480–2495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Z.; Zhang, J.; Zhang, Y.; Shan, H. DU-GAN: Generative Adversarial Networks with Dual-domain U-Net based discriminators for Low-dose CT denoising. IEEE Trans. Instrum. Meas. 2022, 71, 4500512. [Google Scholar] [CrossRef]
- Löhdefink, J.; Hüger, F.; Schlicht, P.; Fingscheidt, T. Scalar and vector quantization for learned image compression: A study on the effects of MSE and GAN loss in various spaces. In Proceedings of the 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), Rhodes, Greece, 20–23 September 2020; pp. 1–8. [Google Scholar]
- Altakrouri, S.; Usman, S.B.; Ahmad, N.B.; Justinia, T.; Noor, N.M. Image to image translation networks using perceptual adversarial loss function. In Proceedings of the 2021 IEEE International Conference on Signal and Image Processing Applications (ICSIPA), Kuala Terengganu, Malaysia, 13–15 September 2021; pp. 89–94. [Google Scholar]
- Cho, Y.S.; Kim, S.; Lee, J.H. Source model selection for transfer learning of image classification using supervised contrastive loss. In Proceedings of the 2021 IEEE International Conference on Big Data and Smart Computing (BigComp), Jeju, Korea, 17–20 January 2021; pp. 325–329. [Google Scholar]
BM3D | UDWT | DnCNN | FFDNet | IRCNN | LSLA-2 | This Paper | |
---|---|---|---|---|---|---|---|
25 | 29.97 | 25.51 | 30.43 | 30.44 | 30.38 | 28.99 | 27.53 |
50 | 26.72 | 23.42 | 27.18 | 27.32 | 26.32 | 25.63 | 26.85 |
75 | 22.32 | 19.98 | 22.21 | 22.43 | 22.87 | 22.31 | 24.49 |
100 | 19.56 | 17.53 | 20.12 | 20.62 | 19.78 | 20.54 | 24.71 |
BM3D | UDWT | DnCNN | FFDNet | IRCNN | LSLA-2 | This Paper | |
---|---|---|---|---|---|---|---|
25 | 0.8447 | 0.8053 | 0.8597 | 0.8582 | 0.8576 | 0.8286 | 0.8413 |
50 | 0.7659 | 0.7495 | 0.7865 | 0.7841 | 0.7853 | 0.7664 | 0.8176 |
75 | 0.7132 | 0.7054 | 0.7178 | 0.7232 | 0.7152 | 0.7143 | 0.7868 |
100 | 0.6856 | 0.6394 | 0.6871 | 0.6882 | 0.6725 | 0.6532 | 0.7640 |
With OA (PSNR/SSIM) | 27.53/0.8413 | 26.86/0.8176 | 24.49/0.7868 | 24.71/0.7640 |
Without OA (PSNR/SSIM) | 21.13/0.6396 | 20.45/0.6034 | 19.12/0.5958 | 18.63/0.5756 |
With OA (PSNR/SSIM) | 26.93/0.8325 | 25.86/0.8123 | 23.91/0.7783 | 24.02/0.7601 | |
26.52/0.8297 | 25.21/0.8043 | 23.42/0.7642 | 23.02/0.7554 | ||
26.36/0.8223 | 25.15/0.7931 | 22.97/0.7662 | 22.25/0.7510 | ||
Without OA (PSNR/SSIM) | 16.57/0.5217 | 15.50/0.5020 | 14.35/0.4715 | 13.36/0.4563 | |
13.45/0.4570 | 12.62/0.4234 | 11.98/0.4044 | 10.52/0.3851 | ||
11.39/0.4178 | 10.84/0.3899 | 10.02/0.3620 | 9.15/0.3572 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, M.-L.; Zhao, L.-L.; Xiao, L. Image Denoising Based on GAN with Optimization Algorithm. Electronics 2022, 11, 2445. https://doi.org/10.3390/electronics11152445
Zhu M-L, Zhao L-L, Xiao L. Image Denoising Based on GAN with Optimization Algorithm. Electronics. 2022; 11(15):2445. https://doi.org/10.3390/electronics11152445
Chicago/Turabian StyleZhu, Min-Ling, Liang-Liang Zhao, and Li Xiao. 2022. "Image Denoising Based on GAN with Optimization Algorithm" Electronics 11, no. 15: 2445. https://doi.org/10.3390/electronics11152445
APA StyleZhu, M. -L., Zhao, L. -L., & Xiao, L. (2022). Image Denoising Based on GAN with Optimization Algorithm. Electronics, 11(15), 2445. https://doi.org/10.3390/electronics11152445