A Fully Polarity-Aware Double-Node-Upset-Resilient Latch Design
Abstract
:1. Introduction
2. Proposed DNU-Hardened Latch Design
2.1. Overall Structure and Design Idea
2.2. Circuit Operation
2.3. SEU-Resilience Analysis
2.4. Radiation-Aware Layout
3. Evaluation Results
3.1. Radiation Simulation Results
3.2. Performance Comparison and Evaluation
3.3. Radiation-Hardening Capability Comparison
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pudi N S, A.K.; Baghini, M.S. Robust Soft Error Tolerant CMOS Latch Configurations. IEEE Trans. Comput. 2016, 65, 2820–2834. [Google Scholar] [CrossRef]
- Black, J.D.; Dodd, P.E.; Warren, K.M. Physics of multiple-node charge collection and impacts on single-event characterization and soft error rate prediction. IEEE Trans. Nucl. Sci. 2013, 60, 1836–1851. [Google Scholar] [CrossRef]
- Calin, T.; Nicolaidis, M.; Velazco, R. Upset hardened memory design for submicron CMOS technology. IEEE Trans. Nucl. Sci. 1996, 43, 2874–2878. [Google Scholar] [CrossRef]
- Loveless, T.; Jagannathan, S.; Reece, T.; Chetia, J.; Bhuva, B.; McCurdy, M.; Massengill, L.; Wen, S.J.; Wong, R.; Rennie, D. Neutron-and proton-induced single event upsets for D-and DICE-flip/flop designs at a 40 nm technology node. IEEE Trans. Nucl. Sci. 2011, 58, 1008–1014. [Google Scholar] [CrossRef]
- Yan, A.; Huang, Z.; Yi, M.; Xu, X.; Ouyang, Y.; Liang, H. Double-node-upset-resilient latch design for nanoscale CMOS technology. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2017, 25, 1978–1982. [Google Scholar] [CrossRef]
- Yan, A.; Yang, K.; Huang, Z.; Zhang, J.; Cui, J.; Fang, X.; Yi, M.; Wen, X. A Double-Node-Upset Self-Recoverable Latch Design for High Performance and Low Power Application. IEEE Trans. Circuits Syst. II Express Briefs 2019, 66, 287–291. [Google Scholar] [CrossRef]
- Eftaxiopoulos, N.; Axelos, N.; Zervakis, G.; Tsoumanis, K.; Pekmestzi, K. Delta DICE: A double node upset resilient latch. In Proceedings of the 2015 IEEE 58th International Midwest Symposium on Circuits and Systems (MWSCAS), Fort Collins, CO, USA, 2–5 August 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1–4. [Google Scholar]
- Eftaxiopoulos, N.; Axelos, N.; Pekmestzi, K. DONUT: A double node upset tolerant latch. In Proceedings of the 2015 IEEE Computer Society Annual Symposium on VLSI, Montpellier, France, 8–10 July 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 509–514. [Google Scholar]
- Li, Y.; Cheng, X.; Tan, C.; Han, J.; Zhao, Y.; Wang, L.; Li, T.; Tahoori, M.B.; Zeng, X. A Robust Hardened Latch Featuring Tolerance to Double-Node-Upset in 28nm CMOS for Spaceborne Application. IEEE Trans. Circuits Syst. II Express Briefs 2020, 67, 1619–1623. [Google Scholar] [CrossRef]
- Guo, J.; Liu, S.; Zhu, L.; Lombardi, F. Design and evaluation of low-complexity radiation hardened CMOS latch for double-node upset tolerance. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 1925–1935. [Google Scholar] [CrossRef]
- Kelin, L.H.H.; Klas, L.; Mounaim, B.; Prasanthi, R.; Linscott, I.R.; Inan, U.S.; Subhasish, M. LEAP: Layout design through error-aware transistor positioning for soft-error resilient sequential cell design. In Proceedings of the 2010 IEEE International Reliability Physics Symposium, Anaheim, CA, USA, 2–6 May 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 203–212. [Google Scholar]
- Uemura, T.; Tosaka, Y.; Matsuyama, H.; Shono, K.; Uchibori, C.J.; Takahisa, K.; Fukuda, M.; Hatanaka, K. SEILA: Soft error immune latch for mitigating multi-node-SEU and local-clock-SET. In Proceedings of the 2010 IEEE International Reliability Physics Symposium, Anaheim, CA, USA, 2–6 May 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 218–223. [Google Scholar]
- Kawakami, Y.; Hane, M.; Nakamura, H.; Yamada, T.; Kumagai, K. Investigation of soft error rate including multi-bit upsets in advanced SRAM using neutron irradiation test and 3D mixed-mode device simulation. In Proceedings of the IEDM Technical Digest. IEEE International Electron Devices Meeting, San Francisco, CA, USA, 13–15 December 2004; IEEE: Piscataway, NJ, USA, 2004; pp. 945–948. [Google Scholar]
- Black, D.A.; Robinson, W.H.; Wilcox, I.Z.; Limbrick, D.B.; Black, J.D. Modeling of single event transients with dual double-exponential current sources: Implications for logic cell characterization. IEEE Trans. Nucl. Sci. 2015, 62, 1540–1549. [Google Scholar] [CrossRef]
- Gadlage, M.; Schrimpf, R.; Benedetto, J.; Eaton, P.; Mavis, D.; Sibley, M.; Avery, K.; Turflinger, T. Single event transient pulse widths in digital microcircuits. IEEE Trans. Nucl. Sci. 2004, 51, 3285–3290. [Google Scholar] [CrossRef]
- Cohn, L. Single-event effects in advanced digital and analog microelectronics. In Proceedings of the Microelectronics Reliability and Qualification Workshop, Manhattan Beach, CA, USA, 4–5 December 2007. [Google Scholar]
Case: Node(s) | Example | Polarity | Recovery Mechanism |
---|---|---|---|
1: data | X2 | ↑ | X1(P1-off) ↚ X2 → A3(N3-on) ↛ X3(P11-off) ⇒ X2↓ (P2-off, P10, N2-on) |
2: floating | A1 | X | A1(∄ connected input) ↛ X1(P9-off) |
3: data pair (same part) | X2, X4 | ↑, ↑ | X1(P1-off) ↚ X2 → A3(N3-on) ↛ X3(P11-off) X3(P3-off) ↚ X4 → A1(N1-on) ↛ X1(P9-off) ⇒ X2↓ (P2-off, P10 and N2-on) and X4↓ (P4-off, P12 and N4-on) |
4: data, (a)floating (same part) | X2, A1 | ↑, X | A1(∄ connected input) ↛ X1(P9-off) ⇒ Case 4 ≈ Case 1 |
5: data, (r)floating (same part) | X2, A3 | ↑, X | A3(∄ connected input) ↛ X3(P11-off) ⇒ Case 5 ≈ Case 1 |
6: data pair propagation in NSLP (different part) | X2, X5 | ↑, ↓ | X1(P1-off) ↚ X2 → A3(N3-on) ↛ X3(P11-off) X8(N8-off) ↚ X5 → A6(P6-on) → X6↑ (s, N10-on) ↛ A7(P7-off) ⇒ X2↓ (P2-off, N2 and P10-on) (∵ ) ⇒ X6↓ (P6 and N10-off, N6-on) ⇒ X5↑ (N5-off, P5 and N9-on) |
7: data pair propagation in PSLP (different part) | X2, X7 | ↑, ↓ | X1(P1-off) ↚ X2 → A3(N3-on) → X3↓ (s, P11-on) ↛ A4(N4-off) X6(N6-off) ↚ X7 → A8(P8-on) ↛ X8(N12-off) ⇒ X7↑ (N7-off, P7 and N11-on) (∵ ) ⇒ X3↑ (P11 and N3-off, P3-on) ⇒ X2↓ (P2-off, P10 and N2-on) |
8: data, (a)floating (different part) | X2, A6 | ↑, X | X1(P1-off) ↚ X2 → A3(N3-on) ↛ X3(P11-off) X5↓ (s, N5-on) ← X6 ↑ (by A6, N10-on) ↛ A7(P7-off) ⇒ X6↓ (P6-on, N10 and N6-on) (∵ P6 weak inversion) ⇒ X2↓ (P2-off, P10 and N2-on) and X5↑ (N5-off, P5 and N9-on) |
9: data, (r)floating (different part) | X2, A8 | ↑, X | A8(∄ connected input) ↛ X8(N12-off) ⇒ Case 9 ≈ Case 1 |
10: floating pair | A1, A3 | X, X | A1(∄ connected input) ↛ X1(P9-off) A3(∄ connected input) ↛ X3(P11-off) |
Transistor | Aspect Ratio | |
---|---|---|
P1–P4 | 2.5 | High |
P9–P12 | 1 | Low |
N1–N4 | 2 | High |
P5–P8 | 2 | High |
N9–N12 | 1 | Low |
N5–N8 | 2.5 | High |
[5] | [6] | [7] | [8] | [9] | [10] | FPADRL | ||
---|---|---|---|---|---|---|---|---|
# of Transistors | 66 | 48 | 42 | 38 | 28 | 36 | 42 | |
# of Nodes | 21 | 24 | 10 | 10 | 6 | 12 | 16 | |
# of Sensitive nodes | 21 | 24 | 10 | 10 | 6 | 9 | 8 | |
Area (m) | 10.48 | N/A | 11.63 | 8.80 | N/A | 10.98 | 9.69 | |
(ps) | 5.90 | 6.57 | 22.79 | 33.86 | 2.70 | 2.70 | 2.66 | |
(ps) | 52.65 | 16.21 | 14.02 | 21.28 | 30.62 | 62.78 | 40.73 | |
Power (W) | Opaque | 0.71 | 0.47 | 0.44 | 0.33 | 0.19 | 4.14 | 0.43 |
DAR 100% | 2.90 | 1.84 | 2.26 | 3.21 | 1.29 | 7.95 | 1.55 |
Cell Name | Load | Polarity | ( A) | ( A) | (fC) | SEU Width (ps) |
---|---|---|---|---|---|---|
INV1 | INV1 | ↑ | 46 | 120 | 8.41 | 50 |
↓ | 41 | 162 | 10.91 | |||
INV2 | INV2 | ↑ | 127 | 121 | 16.22 | 100 |
↓ | 126 | 164 | 21.01 | |||
INV4 | INV4 | ↑ | 152 | 122 | 29.06 | 200 |
↓ | 159 | 164 | 38.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.-J.; Kang, Y.-M.; Kim, G.-H.; Chang, I.-J.; Kim, J. A Fully Polarity-Aware Double-Node-Upset-Resilient Latch Design. Electronics 2022, 11, 2465. https://doi.org/10.3390/electronics11152465
Park J-J, Kang Y-M, Kim G-H, Chang I-J, Kim J. A Fully Polarity-Aware Double-Node-Upset-Resilient Latch Design. Electronics. 2022; 11(15):2465. https://doi.org/10.3390/electronics11152465
Chicago/Turabian StylePark, Jung-Jin, Young-Min Kang, Geon-Hak Kim, Ik-Joon Chang, and Jinsang Kim. 2022. "A Fully Polarity-Aware Double-Node-Upset-Resilient Latch Design" Electronics 11, no. 15: 2465. https://doi.org/10.3390/electronics11152465
APA StylePark, J. -J., Kang, Y. -M., Kim, G. -H., Chang, I. -J., & Kim, J. (2022). A Fully Polarity-Aware Double-Node-Upset-Resilient Latch Design. Electronics, 11(15), 2465. https://doi.org/10.3390/electronics11152465