Intra Complexity Control Algorithm for VVC
Abstract
:1. Introduction
2. Methods
2.1. Algorithm Framework
2.2. Frame-Level Complexity Estimation Algorithm
2.3. Frame-Level Complexity Control Algorithm
3. Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, H.; Yu, L.; Li, T.; Wang, H. Fast GLCM-based Intra Block Partition for VVC. In Proceedings of the 2021 Data Compression Conference (DCC), Snowbird, UT, USA, 23–26 March 2021; p. 382. [Google Scholar]
- Liu, H.; Zhu, S.; Xiong, R.; Liu, G.; Zeng, B. Cross-Block Difference Guided Fast CU Partition for VVC Intra Coding. In Proceedings of the International Conference on Visual Communications and Image Processing (VCIP), Munich, Germany, 5–8 December 2021; pp. 1–5. [Google Scholar]
- Wu, G.; Huang, Y.; Zhu, C.; Song, L.; Zhang, W. SVM Based Fast CU Partitioning Algorithm for VVC Intra Coding. In Proceedings of the 2021 IEEE International Symposium on Circuits and Systems (ISCAS), Daegu, Korea, 22–28 May 2021; pp. 1–5. [Google Scholar]
- Saldanha, M.; Sanchez, G.; Marcon, C.; Agostini, L. Configurable Fast Block Partitioning for VVC Intra Coding Using Light Gradient Boosting Machine. IEEE Trans. Circuits Syst. Video Technol. 2021, 32, 3947–3960. [Google Scholar] [CrossRef]
- Kulupana, G.; Blasi, S. Fast Versatile Video Coding using Specialised Decision Trees. In Proceedings of the 2021 Picture Coding Symposium (PCS), Bristol, UK, 29 June–2 July 2021; pp. 1–5. [Google Scholar]
- Wang, Z.; Wang, S.; Zhang, J.; Wang, S.; Ma, S. Effective quadtree plus binary tree block partition decision for future video coding. In Proceedings of the 2017 Data Compression Conference (DCC), Snowbird, UT, USA, 4–7 April 2017; pp. 23–32. [Google Scholar]
- Amestoy, T.; Mercat, A.; Hamidouche, W.; Bergeron, C.; Menard, D. Random forest oriented fast QTBT frame partitioning. In Proceedings of the ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 1837–1841. [Google Scholar]
- Fu, T.; Zhang, H.; Mu, F.; Chen, H. Fast CU partitioning algorithm for H.266/VVC intra-frame coding. In Proceedings of the 2019 IEEE International Conference on Multimedia and Expo (ICME), Shanghai, China, 8–12 July 2019; pp. 55–60. [Google Scholar]
- Yang, H.; Shen, L.; Dong, X.; Ding, Q.; An, P.; Jiang, G. Low complexity CTU partition structure decision and fast intra mode decision for versatile video coding. IEEE Trans. Circuits Syst. Video Technol. 2019, 30, 1668–1682. [Google Scholar] [CrossRef]
- Lei, M.; Luo, F.; Zhang, X.; Wang, S.; Ma, S. Look-ahead prediction based coding unit size pruning for VVC intra coding. In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019; pp. 4120–4124. [Google Scholar]
- Chen, J.; Sun, H.; Katto, J.; Zeng, X.; Fan, Y. Fast QTMT partition decision algorithm in VVC intra coding based on variance and gradient. In Proceedings of the 2019 IEEE Visual Communications and Image Processing (VCIP), Sydney, Australia, 1–4 December 2019; pp. 1–4. [Google Scholar]
- Cui, J.; Zhang, T.; Gu, C.; Zhang, X.; Ma, S. Gradient-based early termination of CU partition in VVC intra coding. In Proceedings of the 2020 Data Compression Conference (DCC), Snowbird, UT, USA, 24–27 March 2020; pp. 103–112. [Google Scholar]
- He, Q.; Wu, W.; Luo, L.; Zhu, C.; Guo, H. Random Forest Based Fast CU Partition for VVC Intra Coding. In Proceedings of the 2021 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), Chengdu, China, 4–6 August 2021; pp. 1–4. [Google Scholar]
- Wu, S.; Shi, J.; Chen, Z. HG-FCN: Hierarchical Grid Fully Convolutional Network for Fast VVC Intra Coding. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 5638–5649. [Google Scholar] [CrossRef]
- Pan, Z.; Zhang, P.; Peng, B.; Ling, N.; Lei, J. A CNN-Based Fast Inter Coding Method for VVC. IEEE Signal Process. Lett. 2021, 28, 1260–1264. [Google Scholar] [CrossRef]
- Li, T.; Xu, M.; Tang, R.; Chen, Y.; Xing, Q. DeepQTMT: A deep learning approach for fast QTMT-based CU partition of intra-mode VVC. IEEE Trans. Image Process. 2021, 30, 5377–5390. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Kang, J.W. Fast multi-type tree partitioning for versatile video coding using a lightweight neural network. IEEE Trans. Multimed. 2020, 23, 4388–4399. [Google Scholar] [CrossRef]
- Zhang, Q.; Guo, R.; Jiang, B.; Su, R. Fast CU Decision-Making Algorithm Based on DenseNet Network for VVC. IEEE Access 2021, 9, 119289–119297. [Google Scholar] [CrossRef]
- Tech, G.; Pfaff, J.; Schwarz, H.; Helle, P.; Wieckowski, A.; Marpe, D.; Wiegand, T. Fast partitioning for VVC intra-picture encoding with a CNN minimizing the rate-distortion-time cost. In Proceedings of the 2021 Data Compression Conference (DCC), Snowbird, UT, USA, 23–26 March 2021; pp. 3–12. [Google Scholar]
- Jin, Z.; An, P.; Shen, L.; Yanhg, C. CNN oriented fast QTBT partition algorithm for JVET intra coding. In Proceedings of the 2017 IEEE Visual Communications and Image Processing (VCIP), St. Petersburg, FL, USA, 10–13 December 2017; pp. 1–4. [Google Scholar]
- Wang, Z.; Wang, S.; Zhang, X.; Wang, S.; Ma, S. Fast QTBT partitioning decision for interframe coding with convolution neural network. In Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 2550–2554. [Google Scholar]
- Huang, C.; Peng, Z.; Xu, Y.; Chen, F.; Jiang, Q.; Zhang, Y.; Jiang, G.; Ho, Y.S. Online learning-based multi-stage complexity control for live video coding. IEEE Trans. Image Process. 2020, 30, 641–656. [Google Scholar] [CrossRef] [PubMed]
- Cai, Q.; Chen, Z.; Wu, D.O.; Huang, B. Real-time constant objective quality video coding strategy in high efficiency video coding. IEEE Trans. Circuits Syst. Video Technol. 2019, 30, 2215–2228. [Google Scholar] [CrossRef]
- Li, T.; Xu, M.; Deng, X.; Shen, L. Accelerate CTU partition to real time for HEVC encoding with complexity control. IEEE Trans. Image Process. 2020, 29, 7482–7496. [Google Scholar] [CrossRef]
- Huang, Y.; Song, L.; Xie, R.; Izquierdo, E.; Zhang, W. Modeling acceleration properties for flexible INTRA HEVC complexity control. IEEE Trans. Circuits Syst. Video Technol. 2021, 31, 4454–4469. [Google Scholar] [CrossRef]
- Deng, X.; Xu, M.; Jiang, L.; Sun, X.; Wang, Z. Subjective-driven complexity control approach for HEVC. IEEE Trans. Circuits Syst. Video Technol. 2016, 26, 91–106. [Google Scholar] [CrossRef]
- Jiménez-Moreno, A.; Martínez-Enríquez, E.; Díaz-de-María, F. Complexity control based on a fast coding unit decision method in the HEVC video coding standard. IEEE TMM 2016, 18, 563–575. [Google Scholar] [CrossRef]
- Zhang, J.; Kwong, S.; Zhao, T.; Pan, Z. CTU-level complexity control for high efficiency video coding. IEEE TMM 2018, 20, 29–44. [Google Scholar] [CrossRef]
- Huang, Y.; Xu, J.; Zhang, L.; Zhao, Y.; Song, L. Intra Encoding Complexity Control with a Time-Cost Model for Versatile Video Coding. arXiv 2022, arXiv:2206.05889. [Google Scholar]
- Joint Video Experts Team (JVET). VTM Software. 2020. Available online: https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftwareVTM/ (accessed on 23 February 2020).
- Zhang, M.; Lai, D.; Liu, Z.; An, C. A novel adaptive fast partition algorithm based on CU complexity analysis in HEVC. Multimed. Tools Appl. 2019, 78, 1035–1051. [Google Scholar] [CrossRef]
- Chen, F.; Ren, Y.; Peng, Z.; Jiang, G.; Cui, X. A fast CU size decision algorithm for VVC intra prediction based on support vector machine. Multimed. Tools Appl. 2020, 79, 27923–27939. [Google Scholar] [CrossRef]
- Bjontegaard, G. VCEG-M33: Calculation of average PSNR differences between RD-curves. In Proceedings of the Thirteenth Meeting of Telecommunications Standardization Sector (ITU), Austin, TX, USA, 2–4 April 2001. [Google Scholar]
Sequence | QP | POC | |||||
---|---|---|---|---|---|---|---|
0 | 1 | 2 | 9 | 19 | 29 | ||
MarketPlace | 22 | 410.27 | 407.26 | 402.19 | 417.11 | 371.31 | 400.38 |
27 | 214.69 | 220.28 | 216.61 | 237.00 | 185.49 | 202.13 | |
32 | 121.40 | 124.78 | 124.17 | 148.20 | 102.41 | 111.67 | |
37 | 57.71 | 59.42 | 57.16 | 66.28 | 39.94 | 52.50 | |
BasketballDrill | 22 | 78.11 | 78.98 | 78.27 | 77.99 | 80.65 | 78.88 |
27 | 59.59 | 61.27 | 60.23 | 59.03 | 62.05 | 64.17 | |
32 | 41.85 | 42.09 | 43.53 | 43.98 | 43.30 | 45.78 | |
37 | 23.92 | 22.79 | 24.30 | 23.14 | 24.22 | 24.10 | |
BasketballPass | 22 | 24.25 | 23.54 | 23.92 | 18.94 | 20.89 | 23.32 |
27 | 17.99 | 18.18 | 18.14 | 13.40 | 15.96 | 17.23 | |
32 | 12.62 | 12.46 | 12.45 | 9.43 | 11.55 | 13.88 | |
37 | 7.82 | 7.38 | 7.80 | 5.65 | 6.77 | 9.51 |
Sequence | QP | NP | QT | HB | VB | HT | VT |
---|---|---|---|---|---|---|---|
Tango2 | 22 | 57.18 | 2.21 | 22.59 | 12.71 | 2.62 | 2.69 |
27 | 71.39 | 0.94 | 14.89 | 9.73 | 1.40 | 1.64 | |
32 | 76.64 | 0.66 | 12.29 | 7.94 | 1.16 | 1.31 | |
37 | 81.26 | 0.49 | 9.88 | 6.50 | 0.86 | 1.01 | |
CatRobot | 22 | 53.73 | 7.90 | 19.18 | 12.41 | 2.65 | 4.13 |
27 | 58.49 | 5.60 | 17.32 | 12.43 | 2.36 | 3.80 | |
32 | 61.43 | 3.47 | 16.71 | 12.57 | 2.28 | 3.54 | |
37 | 65.02 | 1.62 | 15.68 | 12.43 | 1.98 | 3.27 | |
MarketPlace | 22 | 54.01 | 4.69 | 24.58 | 10.72 | 3.72 | 2.29 |
27 | 58.49 | 3.30 | 23.49 | 8.76 | 4.14 | 1.81 | |
32 | 62.78 | 2.30 | 21.66 | 8.13 | 3.60 | 1.53 | |
37 | 68.43 | 1.52 | 18.82 | 7.10 | 2.93 | 1.20 | |
BasketballDrill | 22 | 56.67 | 29.55 | 5.93 | 3.22 | 2.52 | 2.12 |
27 | 48.95 | 20.08 | 14.15 | 8.32 | 4.45 | 4.05 | |
32 | 49.90 | 10.72 | 20.20 | 11.30 | 4.00 | 3.87 | |
37 | 56.27 | 6.31 | 19.69 | 11.36 | 3.44 | 2.93 | |
BasketballPass | 22 | 44.41 | 14.45 | 21.04 | 8.27 | 7.48 | 4.34 |
27 | 44.69 | 12.57 | 22.47 | 8.89 | 6.82 | 4.56 | |
32 | 47.19 | 10.69 | 23.02 | 8.57 | 6.43 | 4.10 | |
37 | 50.02 | 7.33 | 22.40 | 10.11 | 5.86 | 4.29 |
Pattern | |
---|---|
[0.85, ∞) | , |
[0.75, 0.85) | , , |
[0.65, 0.75) | , |
[0, 0.65) | , , , , , |
Sequence (Class) | |||
---|---|---|---|
Tango2 (A1) | 0.37/13.83 | 0.79/20.97 | 0.84/29.09 |
FoodMarket4 (A1) | 0.23/3.78 | 0.60/9.58 | 0.64/13.95 |
Campfire (A1) | 0.31/10.86 | 0.55/23.22 | 0.63/31.59 |
CatRobot (A1) | 0.31/10.85 | 0.83/21.50 | 1.04/30.24 |
DaylightRoad2 (A2) | 0.53/10.84 | 0.97/26.55 | 1.16/35.95 |
ParkRunning3 (A2) | 0.61/14.01 | 0.38/17.94 | 0.49/25.20 |
MarketPlace (B) | 0.20/11.15 | 0.56/19.47 | 0.66/31.39 |
RitualDance (B) | 0.73/11.11 | 1.23 /24.62 | 1.46/36.62 |
Cactus (B) | 0.34/10.63 | 0.69 /26.05 | 0.88/35.64 |
BasketballDrive (B) | 0.40/14.68 | 0.80 /26.96 | 0.96/34.98 |
BQTerrace (B) | 0.18/7.79 | 0.72 /27.78 | 0.85/37.57 |
BasketballDrill (C) | 0.37/8.14 | 1.22 /23.18 | 1.64/38.26 |
BQMall (C) | 0.32/9.63 | 0.90 /26.00 | 1.01/38.09 |
PartyScene (C) | −0.01/4.77 | 0.46 /28.36 | 0.48/39.22 |
RaceHorsesC (C) | 0.27/9.04 | 0.66 /27.43 | 0.77/37.09 |
BasketballPass (D) | 0.50/10.60 | 1.09 /19.27 | 1.07/33.88 |
BQSquare (D) | 0.00/13.42 | 0.45/ 18.86 | 0.52/35.81 |
Blowing Bubbles (D) | 0.23/7.55 | 0.74 /26.32 | 0.75/37.47 |
RaceHorsesD (D) | 0.15/7.64 | 0.66 /25.35 | 0.64/35.82 |
Average | 0.32/10.01 | 0.75/23.13 | 0.87/33.57 |
MCE | 2.30 | 4.69 | 5.86 |
Average * | 0.23/9.96 | 0.44/17.72 | 0.66/25.55 |
MCE * | 2.67 | 2.27 | 2.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shu, Z.; Li, J.; Peng, Z.; Chen, F.; Yu, M. Intra Complexity Control Algorithm for VVC. Electronics 2022, 11, 2572. https://doi.org/10.3390/electronics11162572
Shu Z, Li J, Peng Z, Chen F, Yu M. Intra Complexity Control Algorithm for VVC. Electronics. 2022; 11(16):2572. https://doi.org/10.3390/electronics11162572
Chicago/Turabian StyleShu, Zhengjie, Junyi Li, Zongju Peng, Fen Chen, and Mei Yu. 2022. "Intra Complexity Control Algorithm for VVC" Electronics 11, no. 16: 2572. https://doi.org/10.3390/electronics11162572
APA StyleShu, Z., Li, J., Peng, Z., Chen, F., & Yu, M. (2022). Intra Complexity Control Algorithm for VVC. Electronics, 11(16), 2572. https://doi.org/10.3390/electronics11162572