LSW-Net: A Learning Scattering Wavelet Network for Brain Tumor and Retinal Image Segmentation
Abstract
:1. Introduction
- In order to separate the high-frequency and low-frequency features of the feature map during downsampling, we introduce the DTCWT-Scat module into the Unet and innovatively propose the LSW-Net model.
- We design an improved active contour loss function, which can improve sensitivity to small boundaries and can better solve the problem of boundary under-segmentation.
- Through BraTS brain tumor segmentation experiments, our LSW-Net network has advantages when compared with traditional FCN, SegNet, At-Unet, and some advanced segmentation algorithms in terms of Dice coefficient, accuracy, sensitivity, and other indicators.
- Through the DRIVE retinal vessel segmentation experiments, the effectiveness and robustness of the LSW-Net + IAC-Loss model are illustrated.
2. Related Work
2.1. Dual-Tree Complex Scattering Wavelet Transform
2.2. Related Loss Functions
3. Proposed Method
3.1. Learning Scattering Wavelet Network
Algorithm 1: Learning Scattering Wavelet Network |
Input: Preprocess image, ; |
Num of encoder–decoder layers, ; |
Kernel size, ; |
Num of encoder kernels, ; |
Num of decoder kernels, ; |
Output: Predictive segmentation map, ; |
initialization; |
Encoder: |
for to do |
end |
Decoder: |
for to 2 do |
end |
return |
3.2. DTCWT-Scat Module
3.3. IAC-Loss Function
Algorithm 2: Improved AC-Loss function |
Input: Predictive segmentation map, ; Binary ground truth map, ; Equilibrium coefficient, ; Batch size, ; Channels, ; Image width, ; Image height, ; Output: IAC-Loss Error, ; initialization; return |
4. Experiments
4.1. Data Preprocessing and Evaluation Metrics
4.2. Experiment 1: BraTS Brain Tumor Segmentation
4.3. Experiment 2: DRIVE Retinal Segmentation
4.4. Experiment 3: Discussion on Equilibrium Coefficient α
4.5. Experiment 4: IAC-Loss Effectiveness Evaluation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kaur, T.; Saini, B.S.; Gupta, S. A novel fully automatic multilevel thresholding technique based on optimized intuitionistic fuzzy sets and tsallis entropy for MR brain tumor image segmentation. Australas. Phys. Eng. Sci. Med. 2018, 41, 41–58. [Google Scholar] [CrossRef]
- Sukanya, A.; Rajeswari, R.; Murugan, K.S. Region based coronary artery segmentation using modified frangi’s vesselness measure. Int. J. Imaging Syst. Technol. 2020, 30, 716–730. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, G.; Wang, Y.; Dey, N.; Sherratt, R.S.; Shi, F. A distance regularized level-set evolution model based MRI dataset segmentation of brain’s caudate nucleus. IEEE Access 2019, 7, 124128–124140. [Google Scholar] [CrossRef]
- Chan, T.F.; Vese, L.A. Active contours without edges. IEEE Trans. Image Process. 2001, 10, 266–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lie, J.; Lysaker, M.; Tai, X.-C. A binary level set model and some applications to mumford-shah image segmentation. IEEE Trans. Image Process. 2006, 15, 1171–1181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, 25, 84–90. [Google Scholar] [CrossRef]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. Unet: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; Springer: Berlin, Germany, 2015; pp. 234–241. [Google Scholar]
- Cicek, O.; Abdulkadir, A.; Lienkamp, S.S.; Brox, T.; Ronneberger, O. 3d Unet: Learning dense volumetric segmentation from sparse annotation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Athens, Greece, 17–21 October 2016; Springer: Berlin, Germany, 2016; pp. 424–432. [Google Scholar]
- Shrestha, H.; Dhasarathan, C.; Kumar, M.; Nidhya, R.; Shankar, A.; Kumar, M. A deep learning based convolution neural network-DCNN approach to detect brain tumor. In Proceedings of the Academia-Industry Consortium for Data Science, Wenzhou, China, 19–20 December 2020; Springer: Singapore, 2022; pp. 115–127. [Google Scholar]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef] [PubMed]
- Schlemper, J.; Oktay, O.; Schaap, M.; Heinrich, M.; Kainz, B.; Glocker, B.; Rueckert, D. Attention gated networks: Learning to leverage salient regions in medical images. Med. Image Anal. 2019, 53, 197–207. [Google Scholar] [CrossRef]
- Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Kim, S.; Kim, T.; Kim, C. CNN-based semantic segmentation using level set loss. In Proceedings of the 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa Village, HI, USA, 7–11 January 2019; IEEE: New York, NY, USA, 2019; pp. 1752–1760. [Google Scholar]
- Chen, X.; Williams, B.M.; Vallabhaneni, S.R.; Czanner, G.; Williams, R.; Zheng, Y. Learning active contour models for medical image segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 11632–11640. [Google Scholar]
- Bruna, J.; Mallat, S. Invariant scattering convolution networks. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1872–1886. [Google Scholar] [CrossRef] [Green Version]
- Oyallon, E.; Belilovsky, E.; Zagoruyko, S. Scaling the scattering transform: Deep hybrid networks. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 5618–5627. [Google Scholar]
- Rodriguez, M.X.B.; Gruson, A.; Polania, L.; Fujieda, S.; Prieto, F.; Takayama, K.; Hachisuka, T. Deep adaptive wavelet network. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Snowmass Village, CO, USA, 1–5 March 2020; pp. 3111–3119. [Google Scholar]
- Cotter, F. Uses of Complex Wavelets in Deep Convolutional Neural Networks. Ph.D. Thesis, University of Cambridge, Cambridge, UK, 2020. [Google Scholar]
- Pathak, D.; Krahenbuhl, P.; Donahue, J.; Darrell, T.; Efros, A.A. Context encoders: Feature learning by inpainting. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2536–2544. [Google Scholar]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 448–456. [Google Scholar]
- Staal, J.; Abramoff, M.D.; Niemeijer, M.; Viergever, M.A.; Van Ginneken, B. Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 2004, 23, 501–509. [Google Scholar] [CrossRef] [PubMed]
- Menze, B.H.; Jakab, A.; Bauer, S.; Cramer, J.K.; Farahani, K.; Kirby, J.; Burren, Y.; Porz, N.; Slotboom, J.; Wiest, R.; et al. The multimodal brain tumor image segmentation benchmark (brats). IEEE Trans. Med. Imaging 2014, 34, 1993–2024. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Shen, X.; Cheng, H.; Qian, Q. Brain tumor segmentation based on hybrid clustering and morphological operations. Int. J. Biomed. Imaging 2019, 1–11. [Google Scholar] [CrossRef]
- Li, H.; Li, A.; Wang, M. A novel end-to-end brain tumor segmentation method using improved fully convolutional networks. Comput. Biol. Med. 2019, 108, 150–160. [Google Scholar] [CrossRef]
- Bowen, F.; Qi, L.X.; Yu, G.; Qing, L.; Yang, L. Three-dimensional parallel convolution neural network brain tumor segmentation based on dilated convolution. Laser Optoelectron. Prog. 2020, 57, 141009. [Google Scholar] [CrossRef]
- Latif, U.; Shahid, A.R.; Raza, B.; Ziauddin, S.; Khan, M.A. An end-to-end brain tumor segmentation system using multi-inception-Unet. Int. J. Imaging Syst. Technol. 2021, 31, 1803–1816. [Google Scholar] [CrossRef]
- Hao, K.; Lin, S.; Qiao, J.; Tu, Y. A generalized pooling for brain tumor segmentation. IEEE Access 2021, 9, 159283–159290. [Google Scholar] [CrossRef]
- Cheng, E.; Du, L.; Wu, Y.; Zhu, Y.J.; Megalooikonomou, V.; Ling, H. Discriminative vessel segmentation in retinal images by fusing contextaware hybrid features. Mach. Vis. Appl. 2014, 25, 1779–1792. [Google Scholar] [CrossRef]
- Azzopardi, G.; Strisciuglio, N.; Vento, M.; Petkov, N. Trainable cosfire filters for vessel delineation with application to retinal images. Med. Image Anal. 2015, 19, 46–57. [Google Scholar] [CrossRef] [Green Version]
- Roychowdhury, S.; Koozekanani, D.D.; Parhi, K.K. Blood vessel segmentation of fundus images by major vessel extraction and sub-image classification. IEEE J. Biomed. Health Inform. 2014, 19, 1118–1128. [Google Scholar] [CrossRef]
- KManinis, K.; Tuset, J.P.; Arbelaez, P.; Gool, L.V. Deep retinal image understanding. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Athens, Greece, 17–21 October 2016; Springer: Berlin, Germany, 2016; pp. 140–148. [Google Scholar]
- Xie, S.; Tu, Z. Holistically-nested edge detection. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1395–1403. [Google Scholar]
- Alom, Z.; Yakopcic, C.; Hasan, M.; Taha, T.M.; Asari, V.K. Recurrent residual Unet for medical image segmentation. J. Med. Imaging 2019, 6, 014006. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Chen, C.; Lu, Y.; Meng, K.; Chen, H.; Zhou, K.; Wang, Z.; Xiao, R. Retinal vessel segmentation combined with generative adversarial networks and dense Unet. IEEE Access 2020, 8, 194551–194560. [Google Scholar] [CrossRef]
- XDu, X.-F.; Wang, J.-S.; Sun, W.-Z. Unet retinal blood vessel segmentation algorithm based on improved pyramid pooling method and attention mechanism. Phys. Med. Biol. 2021, 66, 175013. [Google Scholar]
- Arias, M.E.G.; Santos, D.M.; Borrero, I.P.; Vazquez, M.J.V. A new deep learning method for blood vessel segmentation in retinal images based on convolutional kernels and modified Unet model. Comput. Methods Programs Biomed. 2021, 205, 106081. [Google Scholar] [CrossRef]
- Zou, B.; Dai, Y.; He, Q.; Zhu, C.; Liu, G.; Su, Y.; Tang, R. Multi-label classification scheme based on local regression for retinal vessel segmentation. IEEE/ACM Trans. Comput. Biol. Bioinform. 2020, 18, 2586–2597. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Wang, T.; Huang, Z.; Xie, F.; Liu, Z.; Wang, B.; Xu, J. MD-Net: A multi-scale dense network for retinal vessel segmentation. Biomed. Signal Process. Control 2021, 70, 102977. [Google Scholar] [CrossRef]
- Yan, H.; Xie, J.; Yue, X.; Wang, J.; Guo, S. MFE-Net: Multi-type feature enhancement net for retinal blood vessel segmentation. In Proceedings of the 2022 5th International Conference on Artificial Intelligence and Big Data (ICAIBD), Chengdu, China, 27–30 May 2022; pp. 51–56. [Google Scholar]
Metric | Description |
---|---|
Pre (Precision) | |
Dice (Dice coefficient) | |
Sen (Sensitivity) | |
Spe (Specificity) | |
Acc (Accuracy) |
Method | Pre | Dice | Sen | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ET | TC | WT | AVG | ET | TC | WT | AVG | ET | TC | WT | AVG | |
FCN [7] | 0.7650 | 0.6554 | 0.7831 | 0.7345 | 0.7656 | 0.6802 | 0.8125 | 0.7528 | 0.8197 | 0.7904 | 0.8722 | 0.8274 |
SegNet [11] | 0.7748 | 0.7076 | 0.8669 | 0.7831 | 0.7316 | 0.6984 | 0.8448 | 0.7583 | 0.7615 | 0.7754 | 0.8464 | 0.7944 |
At-Unet [12] | 0.7764 | 0.7235 | 0.8791 | 0.7930 | 0.7646 | 0.7312 | 0.8600 | 0.7853 | 0.8080 | 0.8240 | 0.8665 | 0.8328 |
LSW-Net (Ours) | 0.8319 | 0.7447 | 0.9077 | 0.8281 | 0.7947 | 0.7448 | 0.8797 | 0.8064 | 0.8125 | 0.8308 | 0.8690 | 0.8374 |
Method | Year | Dice | |||
---|---|---|---|---|---|
ET | TC | WT | AVG | ||
Zhang et al. [24] | 2019 | 0.7070 | 0.7380 | 0.8850 | 0.7767 |
Li et al. [25] | 2019 | 0.7450 | 0.8080 | 0.8650 | 0.8060 |
Feng et al. [26] | 2020 | 0.7100 | 0.7300 | 0.9000 | 0.7800 |
Latif et al. [27] | 2021 | 0.7180 | 0.7460 | 0.8960 | 0.7860 |
Hao et al. [28] | 2021 | 0.7926 | 0.7465 | 0.8764 | 0.8051 |
LSW-Net (Ours) | 0.7947 | 0.7448 | 0.8797 | 0.8064 |
Method | Year | Dice | Sen | Spe | Acc |
---|---|---|---|---|---|
Cheng et al. [29] | 2014 | - | 0.7252 | 0.9798 | 0.9474 |
Azzopardi et al. [30] | 2015 | - | 0.7655 | 0.9704 | 0.9442 |
Roychowdhury et al. [31] | 2016 | - | 0.7250 | 0.9830 | 0.9520 |
DRIU [32] | 2016 | 0.6701 | 0.9696 | 0.9115 | 0.9165 |
HED [33] | 2017 | 0.6400 | 0.9563 | 0.9007 | 0.9054 |
Unet [34] | 2019 | 0.8142 | 0.7537 | 0.9820 | 0.9553 |
Recurrent Unet [34] | 2019 | 0.8155 | 0.7751 | 0.9816 | 0.9556 |
R2Unet [34] | 2019 | 0.8171 | 0.7792 | 0.9813 | 0.9556 |
Guo et al. [35] | 2020 | 0.8215 | 0.8283 | 0.9726 | 0.9542 |
Du et al. [36] | 2021 | - | 0.7814 | 0.9810 | 0.9556 |
Arias et al. [37] | 2021 | - | 0.8597 | 0.9690 | 0.9563 |
Zou et al. [38] | 2021 | 0.8129 | 0.7761 | 0.9792 | 0.9519 |
MD-Net [39] | 2021 | 0.8099 | 0.8065 | 0.9826 | 0.9676 |
MFE-Net [40] | 2022 | 0.8204 | 0.7853 | 0.9812 | 0.9563 |
LSW-Net + IAC-Loss (Ours) | 0.8216 | 0.7876 | 0.9837 | 0.9565 |
α | Pre | Dice | Sen | Spe | Acc |
---|---|---|---|---|---|
0.1 | 0.8525 | 0.8231 | 0.9565 | 0.7957 | 0.9799 |
0.2 | 0.8542 | 0.8222 | 0.9564 | 0.7925 | 0.9802 |
0.3 | 0.8588 | 0.8216 | 0.9565 | 0.7876 | 0.9837 |
0.4 | 0.8602 | 0.8221 | 0.9566 | 0.7873 | 0.9813 |
0.5 | 0.8571 | 0.8227 | 0.9566 | 0.7909 | 0.9807 |
Dice | Sen | Spe | Acc | |
---|---|---|---|---|
+AC-Loss | 0.7875 | 0.7147 | 0.9853 | 0.9509 |
+CE-Loss | 0.8182 | 0.7920 | 0.9789 | 0.9551 |
+IAC-Loss (α = 0.1) | 0.8231 | 0.7957 | 0.9799 | 0.9565 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, R.; Nan, H.; Zou, Y.; Xie, T.; Ye, Z. LSW-Net: A Learning Scattering Wavelet Network for Brain Tumor and Retinal Image Segmentation. Electronics 2022, 11, 2616. https://doi.org/10.3390/electronics11162616
Liu R, Nan H, Zou Y, Xie T, Ye Z. LSW-Net: A Learning Scattering Wavelet Network for Brain Tumor and Retinal Image Segmentation. Electronics. 2022; 11(16):2616. https://doi.org/10.3390/electronics11162616
Chicago/Turabian StyleLiu, Ruihua, Haoyu Nan, Yangyang Zou, Ting Xie, and Zhiyong Ye. 2022. "LSW-Net: A Learning Scattering Wavelet Network for Brain Tumor and Retinal Image Segmentation" Electronics 11, no. 16: 2616. https://doi.org/10.3390/electronics11162616
APA StyleLiu, R., Nan, H., Zou, Y., Xie, T., & Ye, Z. (2022). LSW-Net: A Learning Scattering Wavelet Network for Brain Tumor and Retinal Image Segmentation. Electronics, 11(16), 2616. https://doi.org/10.3390/electronics11162616