Method of Bidirectional Green Wave Coordinated Control for Arterials under Asymmetric Release Mode
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design Process under Symmetric Release Mode
2.2. Design Method under Asymmetric Release Mode
- (1)
- Common cycle length
- (2)
- Split
- (3)
- Offset
3. Case Study
3.1. Basic Traffic Data
3.2. Calculation Results and Analysis
3.2.1. Green Wave Design under Symmetric Release Mode
3.2.2. Green Wave Design under Asymmetrical Release Mode
3.3. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, D.; Song, Y.; Chen, Q. Bilevel programming for traffic signal coordinated control considering pedestrian crossing. J. Adv. Transp. 2020, 5, 1–18. [Google Scholar] [CrossRef]
- Florek, K. Arterial traffic signal coordination for general and public transport vehicles using dedicated lanes. J. Transp. Eng. Part A Syst. 2020, 146, 1–18. [Google Scholar] [CrossRef]
- Ma, W.; Zou, L.; An, K.; Gartner, N.H.; Wang, M. A partition-enabled multi-mode band approach to arterial traffic signal optimization. IEEE Trans. Intell. Transp. Syst. 2019, 20, 313–322. [Google Scholar] [CrossRef]
- Xu, J. Traffic Management and Control; China Communications Press: Beijing, China, 2007. [Google Scholar]
- Lu, K.; Xu, J.; Ye, R. Improvement of classical algebraic method of signal timing for arterial road coordinate control. J. Highw. Transp. Res. Dev. 2009, 26, 120–124. [Google Scholar] [CrossRef]
- Gazis, D.C. Traffic Theory; Springer: New York, NY, USA, 2002. [Google Scholar]
- Little, J.D.C. The synchronization of traffic signals by mixed-integer linear programming. Oper. Res. 1966, 14, 568–594. [Google Scholar] [CrossRef]
- Little, J.D.C.; Kelson, M.D.; Gartner, N.H. MAXBAND: A program for setting signals on arteries and triangular networks. Transp. Res. Rec. J. TRB 1981, 795, 40–46. [Google Scholar]
- Gartner, N.H.; Assman, S.F.; Lasaga, F.; Hou, D.L. A multi-band approach to arterial traffic signal optimization. Transp. Res. Part B Methodol. 1991, 25, 55–74. [Google Scholar] [CrossRef]
- Papola, N. Bandwidth maximization: Split and unsplit solutions. Transp. Res. Part B Methodol. 1992, 26, 341–356. [Google Scholar] [CrossRef]
- Tian, Z.; Urbanik, T. System partition technique to improve signal coordination and traffic progression. J. Transp. Eng. 2007, 133, 119–128. [Google Scholar] [CrossRef]
- Dai, G.; Wang, H.; Wang, W. Signal optimization and coordination for bus progression based on MAXBAND. KSCE J. Civ. Eng. 2016, 20, 890–898. [Google Scholar] [CrossRef]
- Messer, C.J.; Whitson, R.H.; Dudek, C.; Romano, E.J. Variable sequence multiphase progression optimization program. Highw. Res. Rec. 1973, 445, 24−33. [Google Scholar]
- Tian, Z.; Mangal, V.; Liu, H. Effectiveness of lead-lag phasing on progression bandwidth. J. Transp. Res. Board 2008, 1, 22−27. [Google Scholar] [CrossRef] [Green Version]
- Wong, S. Derivatives of performance index for the traffic model from TRANSYT. Transp. Res. Part B Methodol. 1995, 29, 303–327. [Google Scholar] [CrossRef]
- Macioszek, E.; Iwanowicz, D. A back-of-queue model of a signal-controlled intersection approach developed based on analysis of vehicle driver behavior. Energies 2021, 14, 1204. [Google Scholar] [CrossRef]
- Hu, Y.; Thomas, P.; Stonier, R.J. Traffic signal control using fuzzy logic and evolutionary algorithms. In Proceedings of the 2007 IEEE Congress on Evolutionary Computation, Singapore, 25–28 September 2007; pp. 1785–1792. [Google Scholar]
- Tang, K.; Kong, T.; Wang, F.; Li, K. A modified multiband model for urban arterial coordinate control. J. Tongji Univ. Nat. Sci. 2012, 41, 1002−1008. [Google Scholar]
- Qu, D.; Wan, M.; Li, J.; Wang, J.; Xu, X. Offset optimization of arterial traffic based on traffic-wave theory and its control method. J. Jilin Univ. Eng. Technol. Ed. 2017, 47, 429–437. [Google Scholar]
- Zhang, C. Bidirectional green band bandwidth setting method based on phase sequence adjustment. J. Transp. Sci. Eng. 2020, 36, 113–118. [Google Scholar]
- Lu, K.; Jiang, S.; Zhao, Y. Graphical optimization method for symmetrical bidirectional corridor progression. J. Adv. Transp. 2021, 2021, 7649214. [Google Scholar] [CrossRef]
- Hu, H.; Liu, H.X. Arterial offset optimization using archived high-resolution traffic signal data. Transp. Res. Part C Emerg. Technol. 2013, 37, 131–144. [Google Scholar] [CrossRef]
- Dobrota, N.; Stevanovic, A.; Mitrovic, N. Modifying signal retiming procedures and policies by utilizing high-fidelity modeling with medium-resolution traffic data. Transp. Res. Rec. 2022, 2676, 660–684. [Google Scholar] [CrossRef]
- Yue, R.; Yang, G.; Lin, D.; Wang, A.; Tian, Z. Traffic Signal Retiming to Improve Corridor Performance. J. Transp. Eng. Part A Syst. 2021, 147, 05020009. [Google Scholar] [CrossRef]
- Lu, K.; Liu, Y.; Wu, H.; Huang, J. Algebraic method of bidirectional green wave coordinated control under asymmetric traffic conditions. China J. Highw. Transp. 2015, 28, 95–103. [Google Scholar]
- Li, M.; Luo, D.; Liu, B.; Zhang, X.; Liu, Z.; Li, M. Arterial coordination control optimization based on AM–BAND–PBAND model. Sustainability 2022, 14, 10065. [Google Scholar] [CrossRef]
- Lu, S.; Cheng, L. Optimization of bidirectional green wave coordinated control graphical method under asymmetric phase sequence mode. J. Highw. Transp. Res. Dev. 2015, 32, 128–132. [Google Scholar]
- TS 2-2003 v02.06; NEMA Standards Publication: Traffic Controller Assemblies with NTCIP Requirements. National Electrical Manufacturers Association: Roslyn, VI, USA, 2003.
- Yang, P.; Zhang, S. Traffic Management and Control; China Communications Press: Beijing, China, 1999. [Google Scholar]
- Henry, R.D.; Sabra, W. Signal Timing on a Shoestring; No. FHWA-HOP-07-006; Federal Highway Administration: New York, NY, USA, 2005. [Google Scholar]
- Tian, Z.; Wang, A. A comprehensive review of traffic signal timing practice and techniques in the United States. J. Transp. Syst. Eng. Inf. Technol. 2021, 21, 66–76. [Google Scholar]
Name of Intersection | Changxing Road | Caiyun Road | Jingjiang Road | Yunyu Road | Wenbi Road | |||
---|---|---|---|---|---|---|---|---|
Type | cross | cross | cross | cross | cross | |||
Code | A | B | C | D | E | |||
Spacing (m) | 880 | 430 | 420 | 630 |
Intersections | A | B | C | D | E |
---|---|---|---|---|---|
Ideal signal no. | ① | ② | ③ | ③ | ④ |
Signal position | doublication | right | left | right | right |
Split (%) | 40 | 43 | 48 | 40 | 42 |
Loss (%) | 0 | 15 | 27 | 27 | 11 |
Effective split (%) | 40 | 28 | 21 | 13 | 31 |
Green offset (%) | 80 | 28.5 | 76 | 80 | 29 |
(B) Intersection of Ziwu Road and Caiyun Road | Phase 1 | Phase 2 | Phase 3 | Phase 4 | Phase 5 |
---|---|---|---|---|---|
Green time (s) | 18 | 25 | 22 | 22 | 18 |
(A) Intersection of Ziwu Road and Changxing Road | Phase 1 | Phase 2 | Phase 3 | Phase 4 |
---|---|---|---|---|
Green time(s) | 31 | 27 | 25 | 25 |
(C) Intersection of Ziwu Road and Jingjiang Road | Phase 1 | Phase 2 | Phase 3 | Phase 4 |
---|---|---|---|---|
Green time (s) | 27 | 31 | 30 | 20 |
(D) Intersection of Ziwu Road and Yunyu Road | Phase 1 | Phase 2 | Phase 3 | Phase 4 | Phase 5 |
---|---|---|---|---|---|
Green time (s) | 17 | 25 | 23 | 23 | 17 |
(E) Intersection of Ziwu Road and Wenbi Road | Phase 1 | Phase 2 | Phase 3 | Phase 4 |
---|---|---|---|---|
Green time (s) | 34 | 27 | 27 | 20 |
Intersection Code | A | B | C | D | E |
---|---|---|---|---|---|
Reference coordinated phase | Phase 1 | Phase 1 | Phase 2 | Phase 1 | Phase 1 |
Absolute Offset (s) | 23 | 94 | 113 | 21 | 83 |
Time (ks) | Inbound (A–F) Average Delay (s/veh) | Outbound (F–A) Average Delay (s/veh) | Inbound (A–F) Average Number of Stops (stops/veh) | Outbound (F–A) Average Number of Stops (stops/veh) | Inbound (A–F) Average Travel Time (s) | Outbound (F–A) Average Travel Time (s) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Plan 1 | Plan 2 | Plan 1 | Plan 2 | Plan 1 | Plan 2 | Plan 1 | Plan 2 | Plan 1 | Plan 2 | Plan 1 | Plan 2 | |
3.6 | 41.8 | 32.7 | 45.7 | 36.6 | 1.5 | 0.9 | 2.0 | 1.5 | 312.0 | 276.9 | 330.9 | 296.8 |
7.2 | 42.6 | 34.8 | 44.8 | 35.2 | 1.7 | 1.1 | 1.8 | 1.2 | 314.8 | 281.0 | 328.0 | 292.4 |
10.8 | 41.4 | 34.7 | 45.6 | 36.0 | 1.6 | 1.0 | 1.9 | 1.4 | 312.6 | 279.9 | 329.8 | 295.2 |
14.4 | 40.6 | 31.4 | 48.2 | 37.1 | 1.5 | 1.0 | 1.7 | 1.3 | 310.8 | 276.6 | 330.4 | 295.3 |
18.0 | 43.1 | 34.9 | 47.3 | 36.9. | 1.8 | 1.2 | 1.8 | 1.2 | 316.3 | 282.1 | 330.5 | 294.1 |
average value | 41.9 | 33.7 | 46.3 | 36.4 | 1.6 | 1.0 | 1.8 | 1.3 | 313.3 | 279.3 | 329.9 | 294.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, L.; Cheng, W. Method of Bidirectional Green Wave Coordinated Control for Arterials under Asymmetric Release Mode. Electronics 2022, 11, 2846. https://doi.org/10.3390/electronics11182846
Ji L, Cheng W. Method of Bidirectional Green Wave Coordinated Control for Arterials under Asymmetric Release Mode. Electronics. 2022; 11(18):2846. https://doi.org/10.3390/electronics11182846
Chicago/Turabian StyleJi, Lina, and Wei Cheng. 2022. "Method of Bidirectional Green Wave Coordinated Control for Arterials under Asymmetric Release Mode" Electronics 11, no. 18: 2846. https://doi.org/10.3390/electronics11182846
APA StyleJi, L., & Cheng, W. (2022). Method of Bidirectional Green Wave Coordinated Control for Arterials under Asymmetric Release Mode. Electronics, 11(18), 2846. https://doi.org/10.3390/electronics11182846