Augmented Reality and Robotic Systems for Assistance in Percutaneous Nephrolithotomy Procedures: Recent Advances and Future Perspectives
Abstract
:1. Introduction
2. Literature Review
2.1. Search Strategy
- Topic = (percutaneous nephrolithotomy) AND ((virtual reality) OR (augmented reality) OR (mixed reality)).
- Topic = (percutaneous nephrolithotomy) AND (robot*).
- Topic = (percutaneous nephrolithotomy) AND ((virtual reality) OR (augmented reality) OR (mixed reality)) AND (robot*).
2.2. Virtual and Augmented Reality for PCNL Interventions
2.3. Robotic Assistance in PCNL
2.4. Tracking the US Probe and the Surgical Needle
2.4.1. Probe Tracking
2.4.2. Needle Tracking
3. Discussion
4. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Morris, D.S.; Wei, J.T.; Taub, D.A.; Dunn, R.L.; Wolf, J.S.; Hollenbeck, B.K. Temporal Trends in the Use of Percutaneous Nephrolithotomy. J. Urol. 2006, 175, 1731–1736. [Google Scholar] [CrossRef]
- Preminger, G.M.; Assimos, D.G.; Lingeman, J.E.; Nakada, S.Y.; Pearle, M.S.; Wolf, J.S.J. Chapter 1: AUA guideline on management of staghorn calculi: Diagnosis and treatment recommendations. J. Urol. 2005, 173, 1991–2000. [Google Scholar] [CrossRef]
- de la Rosette, J.; Assimos, D.; Desai, M.; Gutierrez, J.; Lingeman, J.; Scarpa, R.; Tefekli, A. The Clinical Research Office of the Endourological Society Percutaneous Nephrolithotomy Global Study: Indications, Complications, and Outcomes in 5803 Patients. J. Endourol. 2011, 25, 11–17. [Google Scholar] [CrossRef]
- Rodrigues, P.L.; Rodrigues, N.F.; Fonseca, J.; Lima, E.; Vilaca, J. Kidney targeting and puncturing during percutaneous nephrolithotomy: Recent advances and future perspective. J. Endourol. 2013, 27, 826–834. [Google Scholar] [CrossRef] [PubMed]
- Allen, D.; O’Brien, T.; Tiptaft, R.; Glass, J. Defining the learning curve for percutaneous nephrolithotomy. J. Endourol. 2005, 19, 279–282. [Google Scholar] [CrossRef] [PubMed]
- Tanriverdi, O.; Boylu, U.; Kendirci, M.; Kadihasanoglu, M.; Horasanli, K.; Miroglu, C. The learning curve in the training of percutaneous nephrolithotomy. Eur. Urol. 2007, 52, 206–211. [Google Scholar] [CrossRef]
- Ziaee, S.A.; Sichani, M.M.; Kashi, A.H.; Samzadeh, M. Evaluation of the learning curve for percutaneous nephrolithotomy. J. Urol. 2010, 7, 226–231. [Google Scholar]
- Ng, C.F. Training in percutaneous nephrolithotomy: The learning curve and options. Arab J. Urol. 2014, 12, 54–57. [Google Scholar] [CrossRef]
- Garg, A.; Yadav, S.S.; Tomar, V.; Priyadarshi, S.; Giri, V.; Vyas, N.; Agarwal, N. Prospective Evaluation of Learning Curve of Urology Residents for Percutaneous Nephrolithotomy. Urol. Pract. 2016, 3, 230–235. [Google Scholar] [CrossRef]
- Yu, W.; Rao, T.; Li, X.; Ruan, Y.; Yuan, R.; Li, C.; Li, H.; Cheng, F. The learning curve for access creation in solo ultrasonography-guided percutaneous nephrolithotomy and the associated skills. Int. Urol. Nephrol. 2017, 49, 419–424. [Google Scholar] [CrossRef]
- Song, Y.; Ma, Y.; Song, Y.; Fei, X. Evaluating the Learning Curve for Percutaneous Nephrolithotomy under Total Ultrasound Guidance. PLoS ONE 2015, 10, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahan, M.; Sarilar, O.; Savun, M.; Caglar, U.; Erbin, A.; Ozgor, F. Adopting for Supine Percutaneous Nephrolithotomy: Analyzing the Learning Curve of Tertiary Academic Center Urology Team. Urology 2020, 140, 22–26. [Google Scholar] [CrossRef]
- Borofsky, M.S.; Rivera, M.E.; Dauw, C.A.; Krambeck, A.E.; Lingeman, J.E. Electromagnetic Guided Percutaneous Renal Access Outcomes Among Surgeons and Trainees of Different Experience Levels: A Pilot Study. Urology 2020, 136, 266–271. [Google Scholar] [CrossRef]
- Jawed, Y.T.; Golovyan, D.; Lopez, D.; Khan, S.H.; Wang, S.; Freund, C.; Imran, S.; Hameed, U.B.; Smith, J.P.; Kok, L.; et al. Feasibility of a virtual reality intervention in the intensive care unit. Heart Lung 2021, 50, 748–753. [Google Scholar] [CrossRef]
- Breve, B.; Caruccio, L.; Cirillo, S.; Deufemia, V.; Polese, G. Visual ECG Analysis in Real-world Scenarios. In Proceedings of the 27th International DMS Conference on Visualization and Visual Languages (DMSVIVA), Pittsburgh, PA, USA, 29–30 June 2021; pp. 46–54. [Google Scholar]
- Özcan, E.; Birdja, D.; Simonse, L.; Struijs, A. Alarm in the ICU! Envisioning Patient Monitoring and Alarm Management in Future Intensive Care Units. In Service Design and Service Thinking in Healthcare and Hospital Management: Theory, Concepts, Practice; Pfannstiel, M.A., Rasche, C., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 421–446. [Google Scholar] [CrossRef]
- Vidyarthi, A.; Mittal, N. Comparative Study for Brain Tumor Classification on MR/CT Images. In Proceedings of the Third International Conference on Soft Computing for Problem Solving; Pant, M., Deep, K., Nagar, A., Bansal, J.C., Eds.; Springer India: New Delhi, India, 2014; pp. 889–897. [Google Scholar]
- Aamir, M.; Rahman, Z.; Dayo, Z.A.; Abro, W.A.; Uddin, M.I.; Khan, I.; Imran, A.S.; Ali, Z.; Ishfaq, M.; Guan, Y.; et al. A deep learning approach for brain tumor classification using MRI images. Comput. Electr. Eng. 2022, 101, 108105. [Google Scholar] [CrossRef]
- Breve, B.; Caruccio, L.; Cimino, G.; Cirillo, S.; Iuliano, G.; Polese, G. Brain tumors classification from MRI images: A comparative study between different neural networks. In Proceedings of the 28th International DMS Conference on Visualization and Visual Languages, Pittsburgh, PA, USA, 29–30 June 2022; pp. 23–30. [Google Scholar]
- Knudsen, B.E.; Matsumoto, E.D.; Chew, B.; Johnson, B.; Margulis, V.; Cadeddu, J.A.; Pearle, M.S.; Pautler, S.E.; Denstedt, J.D. A randomized, controlled, prospective study validating the acquisition of percutaneous renal collecting system access skills using a computer based hybrid virtual reality surgical simulator: Phase I. J. Urol. 2006, 176, 2173–2178. [Google Scholar] [CrossRef]
- Mishra, S.; Kurien, A.; Patel, R.; Patil, P.; Ganpule, A.; Muthu, V.; Sabnis, R.B.; Desai, M. Validation of virtual reality simulation for percutaneous renal access training. J. Endourol. 2010, 24, 635–640. [Google Scholar] [CrossRef]
- Papatsoris, A.G.; Shaikh, T.; Patel, D.; Bourdoumis, A.; Bach, C.; Buchholz, N.; Masood, J.; Junaid, I. Use of a Virtual Reality Simulator to Improve Percutaneous Renal Access Skills: A Prospective Study in Urology Trainees. Urol. Int. 2012, 89, 185–190. [Google Scholar] [CrossRef]
- Sainsbury, B.; Lacki, M.; Shahait, M.; Goldenberg, M.; Baghdadi, A.; Cavuoto, L.; Ren, J.; Green, M.; Lee, J.; Averch, T.D.; et al. Evaluation of a Virtual Reality Percutaneous Nephrolithotomy (PCNL) Surgical Simulator. Front. Robot. AI 2020, 6, 145. [Google Scholar] [CrossRef]
- Sainsbury, B.; Wilz, O.; Ren, J.; Green, M.; Fergie, M.; Rossa, C. Preoperative Virtual Reality Surgical Rehearsal of Renal Access during Percutaneous Nephrolithotomy: A Pilot Study. Electronics 2022, 11, 1562. [Google Scholar] [CrossRef]
- Pinzon, D.; Byrns, S.; Zheng, B. Prevailing Trends in Haptic Feedback Simulation for Minimally Invasive Surgery. Surg. Innov. 2016, 23, 415–421. [Google Scholar] [CrossRef]
- Vavra, P.; Roman, J.; Zonca, P.; Ihnat, P.; Nemec, M.; Kumar, J.; Habib, N.; El-Gendi, A. Recent Development of Augmented Reality in Surgery: A Review. J. Healthc. Eng. 2017, 2017, 4574172. [Google Scholar] [CrossRef] [PubMed]
- Lamata, P.; Ali, W.; Cano, A.; Cornella, J.; Declerck, J.; Elle, O.; Freudenthal, A.; Furtado, H.; Kalkofen, D.; Naerum, E.; et al. Augmented Reality for Minimally Invasive Surgery: Overview and Some Recent Advances. In Augmented Reality; IntechOpen: London, UK, 2010. [Google Scholar]
- Detmer, F.J.; Hettig, J.; Schindele, D.; Schostak, M.; Hansen, C. Virtual and Augmented Reality Systems for Renal Interventions: A Systematic Review. IEEE Rev. Biomed. Eng. 2017, 10, 78–94. [Google Scholar] [CrossRef] [PubMed]
- Wen, R.; Chng, C.B.; Chui, C.K. Augmented Reality Guidance with Multimodality Imaging Data and Depth-Perceived Interaction for Robot-Assisted Surgery. Robotics 2017, 6, 13. [Google Scholar] [CrossRef]
- Oliveira-Santos, T.; Peterhans, M.; Roth, B.; Reyes, M.; Nolte, L.P.; Thalmann, G.; Weber, S. Computer aided surgery for percutaneous nephrolithotomy: Clinical requirement analysis and system design. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Buenos Aires, Argentina, 31 August–4 September 2010; pp. 442–445. [Google Scholar] [CrossRef]
- Rassweiler, J.J.; Muller, M.; Fangerau, M.; Klein, J.; Goezen, A.S.; Pereira, P.; Meinzer, H.P.; Teberd, D. iPad-Assisted Percutaneous Access to the Kidney Using Marker-Based Navigation: Initial Clinical Experience. Eur. Urol. 2012, 61, 628–631. [Google Scholar] [CrossRef]
- Akand, M.; Civcik, L.; Buyukaslan, A.; Altintas, E.; Kocer, E.; Koplay, M.; Erdogru, T. Feasibility of a novel technique using 3-dimensional modeling and augmented reality for access during percutaneous nephrolithotomy in two different ex-vivo models. Int. Urol. Nephrol. 2019, 51, 17–25. [Google Scholar] [CrossRef]
- Muller, M.; Rassweiler, M.C.; Klein, J.; Seitel, A.; Gondan, M.; Baumhauer, M.; Teber, D.; Rassweiler, J.J.; Meinzer, H.P.; Maier-Hein, L. Mobile augmented reality for computer-assisted percutaneous nephrolithotomy. Int. J. Comput. Assist. Radiol. Surg. 2013, 8, 663–675. [Google Scholar] [CrossRef]
- Tai, Y.; Wei, L.; Zhou, H.; Peng, J.; Li, Q.; Li, F.; Zhang, J.; Shi, J. Augmented-reality-driven medical simulation platform for percutaneous nephrolithotomy with cybersecurity awareness. Int. J. Distrib. Sens. Netw. 2019, 15, 1550147719840173. [Google Scholar] [CrossRef]
- Mozer, P.; Conort, P.; Leroy, A.; Baumann, M.; Payan, Y.; Troccaz, J.; Chartier-Kastler, E.; Richard, F. Aid to percutaneous renal access by virtual projection of the ultrasound puncture tract onto fluoroscopic images. J. Endourol. 2007, 21, 460–465. [Google Scholar] [CrossRef] [Green Version]
- Wilz, O.; Sainsbury, B.; Rossa, C. Constrained haptic-guided shared control for collaborative human–robot percutaneous nephrolithotomy training. Mechatronics 2021, 75, 102528. [Google Scholar] [CrossRef]
- Stoianovici, D.; Whitcomb, L.L.; Anderson, J.H.; Taylor, R.H.; Kavoussi, L.R. A modular surgical robotic system for image guided percutaneous procedures. In Medical Image Computing and Computer-Assisted Intervention—MICCAI’98; Wells, W.M., Colchester, A., Delp, S., Eds.; Springer: Heidelberg/Berlin, Germany, 1998; pp. 404–410. [Google Scholar]
- Stoianovici, D.; Jun, C.; Lim, S.; Li, P.; Petrisor, D.; Fricke, S.; Sharma, K.; Cleary, K. Multi-imager compatible, MR safe, remote center of motion needle-guide robot. IEEE Trans. Biomed. Eng. 2017, 65, 165–177. [Google Scholar] [CrossRef] [PubMed]
- Paranawithana, I.; Li, H.Y.; Foong, S.; Tan, U.X.; Yang, L.; Kiat Lim, T.S.; Ng, F.C. Ultrasound-Guided Involuntary Motion Compensation of Kidney Stones in Percutaneous Nephrolithotomy Surgery. In Proceedings of the 2018 IEEE 14th International Conference on Automation Science and Engineering (CASE), Munich, Germany, 20–24 August 2018; pp. 1123–1129. [Google Scholar] [CrossRef]
- Li, H.Y.; Paranawithana, I.; Chau, Z.H.; Yang, L.; Lim, T.S.K.; Foong, S.; Ng, F.C.; Tan, U.X. Towards to a Robotic Assisted System for Percutaneous Nephrolithotomy. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 791–797. [Google Scholar]
- Oo, M.M.; Gandhi, H.R.; Chong, K.T.; Goh, J.Q.; Ng, K.W.; Hein, A.T.; Tan, Y.K. Automated Needle Targeting with X-ray (ANT-X)-Robot-assisted device for percutaneous nephrolithotomy (PCNL) with its first successful use in human. J. Endourol. 2021, 35, e919. [Google Scholar] [CrossRef] [PubMed]
- Ghani, K.R.; Rogers, C.G.; Sood, A.; Kumar, R.; Ehlert, M.; Jeong, W.; Ganpule, A.; Bhandari, M.; Desai, M.; Menon, M. Robot-assisted anatrophic nephrolithotomy with renal hypothermia for managing staghorn calculi. J. Endourol. 2013, 27, 1393–1398. [Google Scholar] [CrossRef] [PubMed]
- Fattori, G.; Lomax, A.J.; Weber, D.C.; Safai, S. Technical assessment of the NDI Polaris Vega optical tracking system. Radiat. Oncol. 2021, 16, 1–4. [Google Scholar] [CrossRef]
- Franz, A.M.; Seitel, A.; Cheray, D.; Maier-Hein, L. Polhemus EM tracked Micro Sensor for CT-guided interventions. Med. Phys. 2019, 46, 15–24. [Google Scholar] [CrossRef]
- Farsoni, S.; Astolfi, L.; Bonfe, M.; Spadaro, S.; Volta, C.A. A versatile ultrasound simulation system for education and training in high-fidelity emergency scenarios. IEEE J. Transl. Eng. Health Med. 2017, 5, 1–9. [Google Scholar] [CrossRef]
- Farsoni, S.; Bonfè, M.; Astolfi, L. A low-cost high-fidelity ultrasound simulator with the inertial tracking of the probe pose. Control Eng. Pract. 2017, 59, 183–193. [Google Scholar] [CrossRef]
- Cai, Q.; Peng, C.; Prieto, J.C.; Rosenbaum, A.J.; Stringer, J.S.A.; Jiang, X. A Low-Cost Camera-Based Ultrasound Probe Tracking System: Design and Prototype. In Proceedings of the 2019 IEEE International Ultrasonics Symposium (IUS), Glasgow, UK, 6–9 October 2019; pp. 997–999. [Google Scholar] [CrossRef]
- Cai, Q.; Peng, C.; Lu, J.Y.; Prieto, J.C.; Rosenbaum, A.J.; Stringer, J.S.; Jiang, X. Performance Enhanced Ultrasound Probe Tracking With a Hemispherical Marker Rigid Body. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2021, 68, 2155–2163. [Google Scholar] [CrossRef]
- Pratt, P.; Jaeger, A.; Hughes-Hallett, A.; Mayer, E.; Vale, J.; Darzi, A.; Peters, T.; Yang, G.Z. Robust ultrasound probe tracking: Initial clinical experiences during robot-assisted partial nephrectomy. Int. J. Comput. Assist. Radiol. Surg. 2015, 10, 1905–1913. [Google Scholar] [CrossRef]
- Neshat, H.; Cool, D.W.; Barker, K.; Gardi, L.; Kakani, N.; Fenster, A. A 3D ultrasound scanning system for image guided liver interventions. Med. Phys. 2013, 40, 112903. [Google Scholar] [CrossRef]
- Xue, E.Y. Sensorless Ultrasound Probe 6DoF Pose Estimation through the Use of CNNs on Image Data. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2018. [Google Scholar]
- Chan, C.; Lam, F.; Rohling, R. A needle tracking device for ultrasound guided percutaneous procedures. Ultrasound Med. Biol. 2005, 31, 1469–1483. [Google Scholar] [CrossRef]
- Najafi, M.; Abolmaesumi, P.; Rohling, R. Single-camera closed-form real-time needle tracking for ultrasound-guided needle insertion. Ultrasound Med. Biol. 2015, 41, 2663–2676. [Google Scholar] [CrossRef]
- Xia, W.; West, S.J.; Finlay, M.C.; Pratt, R.; Mathews, S.; Mari, J.M.; Ourselin, S.; David, A.L.; Desjardins, A.E. Three-dimensional ultrasonic needle tip tracking with a fiber-optic ultrasound receiver. J. Vis. Exp. JoVE 2018, 138, e57207. [Google Scholar] [CrossRef]
- Kåsine, T.; Romundstad, L.; Rosseland, L.A.; Fagerland, M.W.; Kessler, P.; Omenås, I.N.; Holmberg, A.; Sauter, A.R. Ultrasonographic needle tip tracking for in-plane infraclavicular brachialis plexus blocks: A randomized controlled volunteer study. Reg. Anesth. Pain Med. 2020, 45, 634–639. [Google Scholar] [CrossRef]
- Reusz, G.; Sarkany, P.; Gal, J.; Csomos, A. Needle-related ultrasound artifacts and their importance in anaesthetic practice. Br. J. Anaesth. 2014, 112, 794–802. [Google Scholar] [CrossRef]
- Ding, M.; Fenster, A. A real-time biopsy needle segmentation technique using Hough Transform. Med. Phys. 2003, 30, 2222–2233. [Google Scholar] [CrossRef]
- Okazawa, S.H.; Ebrahimi, R.; Chuang, J.; Rohling, R.N.; Salcudean, S.E. Methods for segmenting curved needles in ultrasound images. Med. Image Anal. 2006, 10, 330–342. [Google Scholar] [CrossRef]
- Kaya, M.; Bebek, O. Gabor filter based localization of needles in ultrasound guided robotic interventions. In Proceedings of the 2014 IEEE International Conference on Imaging Systems and Techniques (IST) Proceedings, Santorini, Greece, 14–17 October 2014; pp. 112–117. [Google Scholar]
- Kaya, M.; Senel, E.; Ahmad, A.; Bebek, O. Visual needle tip tracking in 2D US guided robotic interventions. Mechatronics 2019, 57, 129–139. [Google Scholar] [CrossRef]
- Mathiassen, K.; Dall’Alba, D.; Muradore, R.; Fiorini, P.; Elle, O.J. Robust real-time needle tracking in 2-D ultrasound images using statistical filtering. IEEE Trans. Control Syst. Technol. 2016, 25, 966–978. [Google Scholar] [CrossRef]
- Ferraguti, F.; Minelli, M.; Farsoni, S.; Bazzani, S.; Bonfè, M.; Vandanjon, A.; Puliatti, S.; Bianchi, G.; Secchi, C. Augmented Reality and Robotic-Assistance for Percutaneous Nephrolithotomy. IEEE Robot. Autom. Lett. 2020, 5, 4556–4563. [Google Scholar] [CrossRef]
- Wein, W.; Ladikos, A.; Fuerst, B.; Shah, A.; Sharma, K.; Navab, N. Global registration of ultrasound to MRI using the LC 2 metric for enabling neurosurgical guidance. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Nagoya, Japan, 22–26 September 2013; pp. 34–41. [Google Scholar]
- Wein, W.; Karamalis, A.; Baumgartner, A.; Navab, N. Automatic bone detection and soft tissue aware ultrasound–CT registration for computer-aided orthopedic surgery. Int. J. Comput. Assist. Radiol. Surg. 2015, 10, 971–979. [Google Scholar] [CrossRef] [PubMed]
Virtual and Augmented Reality | |
---|---|
Reference | Highlights |
[23] | VR: Introduction of a virtual reality simulator to emulate PCNL. |
[22] | VR: Percutaneous renal access using the PERC Mentor simulator. |
[21] | VR: Validation of VR-based simulators for percutaneous renal access. |
[20] | VR: Assessment of training improvement on a VR simulator. |
[24] | VR: Assessment of Marion K181: PCNL simulator with haptic feedback |
[34] | AR: Introduction of an augmented reality simulator to emulate PCNL. |
[29] | AR: Image-guidance for localizing the structures and navigating. |
[31,32,33] | AR: Superimposition of a 3D model onto the image from a tablet. |
[30] | AR: Navigation system based on optical tracking in PCNL. |
[35] | AR: Superimposition of the puncture tract onto fluoroscopic images. |
Robotic assistance | |
Reference | Highlights |
[36] | Skill-trainer robot teleoperated via a haptic device. |
[39] | Admittance-controlled robot with visual-servoing. |
[40] | Robotic system with automatic compensation of kidney displacement. |
[38] | Robot with manual alignment and teleoperated insertion. |
[41] | ANT-X Robot with automated needle alignment and CT image registration. |
Tracking | Reference | Method | Required Equipment | ||
---|---|---|---|---|---|
Probe | [45] | Sensor-fusion | IMU and RFID | ||
[47] | Optical | Single-camera | |||
[48,49] | Optical | Stereo-camera | |||
[50] | Mechanical | Manipulator | |||
[51] | Neural Networks | Sensorless | |||
Features | |||||
Needle | Tip | ||||
curvature | tracking | ||||
Needle | [52] | Sensor-based | Stereo-camera | × | ✓ |
[53] | Sensor-based | Single camera | × | ✓ | |
[55] | Sensor-based | Piezoelectric | ✓ | ✓ | |
[54] | Sensor-based | Fiber-optic | ✓ | ✓ | |
[57] | Image processing | US imaging | × | × | |
[58] | Image processing | US imaging | ✓ | Poor | |
[59] | Image processing | US imaging | × | ✓ | |
[60] | Image processing | US imaging | ✓ | ✓ | |
[61] | Image processing | US imaging | × | ✓ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferraguti, F.; Farsoni, S.; Bonfè, M. Augmented Reality and Robotic Systems for Assistance in Percutaneous Nephrolithotomy Procedures: Recent Advances and Future Perspectives. Electronics 2022, 11, 2984. https://doi.org/10.3390/electronics11192984
Ferraguti F, Farsoni S, Bonfè M. Augmented Reality and Robotic Systems for Assistance in Percutaneous Nephrolithotomy Procedures: Recent Advances and Future Perspectives. Electronics. 2022; 11(19):2984. https://doi.org/10.3390/electronics11192984
Chicago/Turabian StyleFerraguti, Federica, Saverio Farsoni, and Marcello Bonfè. 2022. "Augmented Reality and Robotic Systems for Assistance in Percutaneous Nephrolithotomy Procedures: Recent Advances and Future Perspectives" Electronics 11, no. 19: 2984. https://doi.org/10.3390/electronics11192984
APA StyleFerraguti, F., Farsoni, S., & Bonfè, M. (2022). Augmented Reality and Robotic Systems for Assistance in Percutaneous Nephrolithotomy Procedures: Recent Advances and Future Perspectives. Electronics, 11(19), 2984. https://doi.org/10.3390/electronics11192984