A 280 GHz 30 GHz Bandwidth Cascaded Amplifier Using Flexible Interstage Matching Strategy in 130 nm SiGe Technology
Abstract
:1. Introduction
2. 280-GHz Cascaded Amplifier Design
2.1. Device Selection and Bias Design
2.2. Impedance Matching Network Design
3. Simulation and Measurement Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kissinger, D.; Kahmen, G.; Weigel, R. Millimeter-wave and terahertz transceivers in SiGe BiCMOS technologies. IEEE Trans. Microw. Theory Technol. 2021, 69, 4541–4560. [Google Scholar] [CrossRef]
- Wallace, V.P.; Fitzgerald, A.J.; Shankar, S.; Flanagan, N.; Pye, R.; Cluff, J.; Arnone, D.D. Terahertz pulsed imaging of basal cell carcinoma ex vivo and in vivo. Br. J. Dermatol. 2004, 151, 424–432. [Google Scholar] [CrossRef]
- Pickwell, E.; Wallace, V.P. Biomedical applications of terahertz technology. J. Phys. D Appl. Phys. 2006, 39, R301–R310. [Google Scholar] [CrossRef]
- Ashish, Y.P.; Deepak, D.S.; Kiran, B.E.; Deelip, V.D. Terahertz technology and its applications. Drug Invent. Today 2013, 5, 157–163. [Google Scholar]
- Petrov, V.; Kurner, T.; Hosako, I. IEEE 802.15.3d: First Standardization Efforts for Sub-Terahertz Band Communications toward 6G. IEEE Commun. Mag. 2020, 58, 28–33. [Google Scholar] [CrossRef]
- Rappaport, T.S.; Xing, Y.; Kanhere, O.; Ju, S.; Madanayake, A.; Mandal, S.; Alkhateeb, A.; Trichopoulos, G.C. Wireless communications and applications above 100 GHz: Opportunities and challenges for 6G and beyond. IEEE Access 2019, 7, 78729–78757. [Google Scholar] [CrossRef]
- Moon, S.-R.; Kim, E.-S.; Sung, M.; Rha, H.Y.; Lee, E.S.; Lee, I.-M.; Park, K.H.; Lee, J.K.; Cho, S.-H. 6G Indoor Network Enabled by Photonics- and Electronics-Based sub-THz Technology. J. Lightwave Technol. 2022, 40, 499–510. [Google Scholar] [CrossRef]
- Abdo, I.; Fujimura, T.; Miura, T.; Tokgoz, K.K.; Hamada, H.; Nosaka, H.; Shirane, A.; Okada, K. A 300 GHz wireless transceiver in 65 nm CMOS for IEEE 802.15.3d using push-push subharmonic mixer. In Proceedings of the IEEE/MTT-S International Microwave Symposium (IMS), Los Angeles, CA, USA, 4–6 August 2020; pp. 623–626. [Google Scholar]
- Eissa, M.H.; Maletic, N.; Grass, E.; Kraemer, R.; Kissinger, D.; Malignaggi, A. 100 Gbps 0.8-m Wireless Link based on Fully Integrated 240 GHz IQ Transmitter and Receiver. In Proceedings of the IEEE/MTT-S International Microwave Symposium (IMS), Los Angeles, CA, USA, 4–6 August 2020; pp. 627–630. [Google Scholar]
- Rodríguez, P.; Vázquez; Grzyb, J.; Heinemann, B.; Pfeiffer, U.R. A 16-QAM 100-Gb/s 1-M Wireless Link With an EVM of 17% at 230 GHz in an SiGe Technology. IEEE Microw. Wirel. Compon. Lett. 2019, 29, 297–299. [Google Scholar] [CrossRef]
- Janusz, G.; Pedro, R.-V.; Stefan, M.; Marcel, A.; Ullrich, R.P. A SiGe HBT 215–240 GHz DCA IQ TX/RX Chipset With Built-In Test of USB/LSB RF Asymmetry for 100+ Gb/s Data Rates. IEEE Trans. Microw. Theory Tech. 2022, 70, 1696–1714. [Google Scholar]
- Rodriguez-Vazquez, P.; Grzyb, J.; Heinemann, B.; Pfeiffer, U.R. A QPSK 110-Gb/s Polarization-Diversity MIMO Wireless Link With a 220–255 GHz Tunable LO in a SiGe HBT Technology. IEEE Trans. Microw. Theory Tech. 2020, 68, 3834–3851. [Google Scholar] [CrossRef]
- Eissa, M.H.; Malignaggi, A.; Wang, R.; Elkhouly, M.; Schmalz, K.; Ulusoy, A.C.; Kissinger, D. Wideband 240-GHz transmitter and receiver in BiCMOS technology with 25-Gbit/s data rate. IEEE J. Solid-State Circuits 2018, 53, 2532–2542. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, B.; Ye, Y.; Chen, C.-N.; Gu, Q.J.; Wang, H. A G-Band on-off-Keying Low-Power Transmitter and Receiver for Interconnect Systems in 65-nm CMOS. IEEE Trans. Terahertz Sci. Technol. 2020, 10, 118–132. [Google Scholar] [CrossRef]
- Schmalz, K.; Rothbart, N.; Gluck, A.; Eissa, M.H.; Mausolf, T.; Turkmen, E.; Yilmaz, S.B.; Hubers, H.-W. Dual-Band Transmitter and Receiver with Bowtie-Antenna in 0.13 μm SiGe BiCMOS for Gas Spectroscopy at 222–270 GHz. IEEE Access 2021, 9, 124805–124816. [Google Scholar] [CrossRef]
- Yu, J.; Chen, J.; Zhou, P.; Li, Z.; Li, H.; Yan, P.; Hou, D.; Hong, W. A 300-GHz Transmitter Front End With −4.1-dBm Peak Output Power for Sub-THz Communication Using 130-nm SiGe BiCMOS Technology. IEEE Trans. Microw. Theory Tech. 2021, 69, 4925–4936. [Google Scholar] [CrossRef]
- Hadidian, B.; Khoeini, F.; Hossein, S.M.; Andreia, C.; Afshari, E. A 220-GHz Energy-Efficient High-Data-Rate Wireless ASK Transmitter Array. IEEE J. Solid-State Circuits 2022, 57, 1623–1634. [Google Scholar] [CrossRef]
- Alakusu, U.; Dadash, M.S.; Shopov, S.; Chevalier, P.; Cathelin, A.; Voinigescu, S.P. A 210–284-GHz I–Q Receiver With On-Chip VCO and Divider Chain. IEEE Microw. Wirel. Compon. Lett. 2020, 30, 50–53. [Google Scholar] [CrossRef]
- Vazquez, P.R.; Grzyb, J.; Sarmah, N.; Heinemann, B.; Pfeiffer, U.R. A 219–266 GHz fully-integrated direct-conversion IQ receiver module in a SiGe HBT technology. In Proceedings of the 12th European Microwave Integrated Circuits Conference (EuMIC), Nuremberg, Germany, 8–10 October 2017; pp. 261–264. [Google Scholar]
- Elkhouly, M.; Mao, Y.; Glisic, S.; Meliani, C.; Ellinger, F.; Scheytt, J.C. A 240 GHz direct conversion IQ receiver in 0.13 μm SiGe BiCMOS technology. In Proceedings of the IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Seattle, WA, USA, 2–4 June 2013; pp. 305–308. [Google Scholar]
- Thyagarajan, S.V.; Kang, S.; Niknejad, A.M. A 240 GHz fully integrated wideband QPSK receiver in 65 nm CMOS. IEEE J. Solid-State Circuits 2015, 50, 2268–2280. [Google Scholar] [CrossRef]
- Tokgoz, K.K.; Abdo, I.; Fujimura, T.; Pang, J.; Kawano, Y.; Iwai, T.; Kasamatsu, A.; Watanabe, I.; Okada, K. A 273–301-GHz amplifier with 21-dB peak gain in 65-nm standard bulk CMOS. IEEE Microw. Wirel. Compon. Lett. 2019, 29, 342–344. [Google Scholar] [CrossRef]
- Park, D.; Utomo, D.R.; Lam, B.H.; Hong, J.; Lee, S. A 280-/300-GHz three-stage amplifiers in 65-nm CMOS with 12-/9-dB gain and 1.6/1.4% PAE while dissipating 17.9 mW. IEEE Microw. Wirel. Compon. Lett. 2018, 28, 79–81. [Google Scholar] [CrossRef]
- Gadallah, A.; Eissa, M.H.; Mausolf, T.; Kissinger, D.; Malignaggi, A. A 300-GHz Low-Noise Amplifier in 130-nm SiGe SG13G3 Technology. IEEE Microw. Wirel. Compon. Lett. 2022, 32, 331–334. [Google Scholar] [CrossRef]
- Singh, S.P.; Rahkonen, T.; Leinonen, M.E.; Pärssinen, A. A 290 GHz low noise amplifier operating above fmax /2 in 130 nm SiGe technology for sub-THz/THz receivers. In Proceedings of the IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Atlanta, GA, USA, 7–9 June 2021; pp. 223–226. [Google Scholar]
- Malz, S.; Hillger, P.; Heinemann, B.; Pfeiffer, U.R. A 275 GHz amplifier in 0A3 μm SiGe. In Proceedings of the 11th European Microwave Integrated Circuits Conference (EuMIC), London, UK, 3–4 October 2016; pp. 185–188. [Google Scholar]
- Li, X.; Chen, W.; Zhou, P.; Wang, Y.; Huang, F.; Li, S.; Chen, J.; Feng, Z. A 250–310 GHz Power Amplifier With 15-dB Peak Gain in 130-nm SiGe BiCMOS Process for Terahertz Wireless System. IEEE Trans. Terahertz Sci. Technol. 2022, 12, 1–12. [Google Scholar] [CrossRef]
- Heydari, B. CMOS Circuits and Devices beyond 100 GHz. Ph.D. Thesis, UC Berkeley, Berkeley, CA, USA, 2008. [Google Scholar]
Ref. | Tech. | ft/fmax | Freq. (GHz) | Topology | BW (GHz) | Gain (dB) | Minimum NF * (dB) | IP1dB (dBm) | Area (mm2) | PDC [mW] |
---|---|---|---|---|---|---|---|---|---|---|
This | 130 nm SiGe | 350/450 | 270–300 | CE, SE | 30 | 10.9 | 15.9 | −13.5 * | 0.21 | 99.2 |
[22] | 65 nm CMOS | 250/300 | 297.5 | CS, SE | 1 | 21 | 10 | −34 | 1.12 | 35.4 |
[23] | 65 nm CMOS | NA/395 * | 280 | CS, SE | ~10 ** | 12 | NA | −16.9 | 0.14 | 17.9 |
[24] | 130 nm SiGe | 470/700 | 291 | CC, Diff. | 68 | 10.8 | 11 | −15.6 | 0.26 | 119 |
[25] | 130 nm SiGe | 300/450 | 290 | CC, Diff. | 23 | 12.9 | 16 | −9 | 0.25 | 136 |
[26] | 130 nm SiGe | 350/550 | 275 | CE, Diff. | 7 | 10 | 18 | −10 | 0.35 | 122.7 |
[27] | 130 nm SiGe | 300/500 | 290 | CC, Diff. | 67 | 15 | NA | −12 | 0.57 | 267.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trinh, V.-S.; Song, J.-M.; Park, J.-D. A 280 GHz 30 GHz Bandwidth Cascaded Amplifier Using Flexible Interstage Matching Strategy in 130 nm SiGe Technology. Electronics 2022, 11, 3045. https://doi.org/10.3390/electronics11193045
Trinh V-S, Song J-M, Park J-D. A 280 GHz 30 GHz Bandwidth Cascaded Amplifier Using Flexible Interstage Matching Strategy in 130 nm SiGe Technology. Electronics. 2022; 11(19):3045. https://doi.org/10.3390/electronics11193045
Chicago/Turabian StyleTrinh, Van-Son, Jeong-Moon Song, and Jung-Dong Park. 2022. "A 280 GHz 30 GHz Bandwidth Cascaded Amplifier Using Flexible Interstage Matching Strategy in 130 nm SiGe Technology" Electronics 11, no. 19: 3045. https://doi.org/10.3390/electronics11193045
APA StyleTrinh, V. -S., Song, J. -M., & Park, J. -D. (2022). A 280 GHz 30 GHz Bandwidth Cascaded Amplifier Using Flexible Interstage Matching Strategy in 130 nm SiGe Technology. Electronics, 11(19), 3045. https://doi.org/10.3390/electronics11193045