Multiwalled Carbon Nanotubes Polylactide Composites for Electrical Engineering—Fabrication and Electrical Properties
Abstract
:1. Introduction
2. Methods and Results
3. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Mamunya, Y.P.; Davydenko, V.V.; Pissis, P.; Lebedev, E.V. Electrical and Thermal Conductivity of Polymers Filled with Metal Powders. Eur. Polym. J. 2002, 38, 1887–1897. [Google Scholar] [CrossRef]
- Chu, H.-C.; Chang, Y.-C.; Lin, Y.; Chang, S.-H.; Chang, W.-C.; Li, G.-A.; Tuan, H.-Y. Spray-Deposited Large-Area Copper Nanowire Transparent Conductive Electrodes and Their Uses for Touch Screen Applications. ACS Appl. Mater. Interfaces 2016, 8, 13009–13017. [Google Scholar] [CrossRef]
- Alsharaeh, E.H. Materials Polystyrene-Poly(Methyl Methacrylate) Silver Nanocomposites: Significant Modification of the Thermal and Electrical Properties by Microwave Irradiation. Materials 2016, 9, 458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barton, R.L.; Keith, J.M.; King, J.A. Electrical Conductivity Model Evaluation of Carbon Fiber Filled Liquid Crystal Polymer Composites. J. Appl. Polym. Sci. 2007, 106, 2456–2462. [Google Scholar] [CrossRef]
- Haghgoo, M.; Ansari, R.; Hassanzadeh-Aghdam, M.K. Prediction of Electrical Conductivity of Carbon Fiber-Carbon Nanotube-Reinforced Polymer Hybrid Composites. Compos. Part B Eng. 2019, 167, 728–735. [Google Scholar] [CrossRef]
- Khan, A.A.P.; Khan, A.; Rahman, M.M.; Asiri, A.M.; Oves, M. Lead Sensors Development and Antimicrobial Activities Based on Graphene Oxide/Carbon Nanotube/Poly(O-Toluidine) Nanocomposite. Int. J. Biol. Macromol. 2016, 89, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Asiri, A.M.; Khan, A.A.P.; Rub, M.A.; Azum, N.; Rahman, M.M.; Al-Youbi, A.O.; Qusti, A.H. Dual Nature, Self Oxidized Poly(o-Anisidine) Functionalized Multiwall Carbon Nanotubes Composite: Preparation, Thermal and Electrical Studies. Compos. Part B Eng. 2014, 58, 451–456. [Google Scholar] [CrossRef]
- Khan, A.; Khan, A.A.P.; Asiri, A.M.; Rub, M.A.; Azum, N.; Khan, S.B.; Marwani, H.M. Applied Poly(2-Methoxy Aniline) Sn(II)Silicate Carbon Nanotubes Composite: Synthesis, Characterization, Structure–Property Relationships and Applications. J. Ind. Eng. Chem. 2014, 20, 2301–2309. [Google Scholar] [CrossRef]
- Du, J.-H. The Present Status and Key Problems of Carbon Nanotube Based Polymer Composites. Express Polym. Lett.—Express Polym. Lett. 2007, 1, 253–273. [Google Scholar] [CrossRef]
- Evingür, G.A.; Pekcan, Ö. Optical, Mechanical, and Electrical Properties of Polymer Composites Doped by Multiwalled Carbon Nanotubes. In Carbon Nanotubes-Current Progress of their Polymer Composites; IntechOpen: London, UK, 2016. [Google Scholar]
- Arash, B.; Wang, Q.; Varadan, V.K. Mechanical Properties of Carbon Nanotube/Polymer Composites. Sci. Rep. 2014, 4, 6479. [Google Scholar] [CrossRef] [Green Version]
- Coleman, J.N.; Khan, U.; Gun’ko, Y.K. Mechanical Reinforcement of Polymers Using Carbon Nanotubes. Adv. Mater. 2006, 18, 689–706. [Google Scholar] [CrossRef]
- Périé, T.; Brosse, A.-C.; Tencé-Girault, S.; Leibler, L. Mechanical and Electrical Properties of Multi Walled Carbon Nanotube/ABC Block Terpolymer Composites. Carbon 2012, 50, 2918–2928. [Google Scholar] [CrossRef]
- Sohi, N.J.S.; Bhadra, S.; Khastgir, D. The Effect of Different Carbon Fillers on the Electrical Conductivity of Ethylene Vinyl Acetate Copolymer-Based Composites and the Applicability of Different Conductivity Models. Carbon 2011, 49, 1349–1361. [Google Scholar] [CrossRef]
- Taherian, R.; Hadianfard, M.J.; Golikand, A.N. A New Equation for Predicting Electrical Conductivity of Carbon-Filled Polymer Composites Used for Bipolar Plates of Fuel Cells. J. Appl. Polym. Sci. 2013, 128, 1497–1509. [Google Scholar] [CrossRef]
- Sandler, J.; Shaffer, M.S.P.; Prasse, T.; Bauhofer, W.; Schulte, K.; Windle, A.H. Development of a Dispersion Process for Carbon Nanotubes in an Epoxy Matrix and the Resulting Electrical Properties. Polymer 1999, 40, 5967–5971. [Google Scholar] [CrossRef]
- Dufresne, A.; Paillet, M.; Putaux, J.L.; Canet, R.; Carmona, F.; Delhaes, P.; Cui, S. Processing and Characterization of Carbon Nanotube/Poly(Styrene-Co-Butyl Acrylate) Nanocomposites. J. Mater. Sci. 2002, 37, 3915–3923. [Google Scholar] [CrossRef]
- Hu, G.; Zhao, C.; Zhang, S.; Yang, M.; Wang, Z. Low Percolation Threshold of Electrical Conductivity and Rheology in Poly(Ethylene Terephthalate) through the Networks of Multi-Walled Carbon Nanotubes. Polymer 2006, 47, 480–488. [Google Scholar] [CrossRef]
- Castro-Aguirre, E.; Iñiguez-Franco, F.; Samsudin, H.; Fang, X.; Auras, R. Poly(Lactic Acid)—Mass Production, Processing, Industrial Applications, and End of Life. Adv. Drug Deliv. Rev. 2016, 107, 333–366. [Google Scholar] [CrossRef] [Green Version]
- Iijima, S. Helical Microtubules of Graphitic Carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Honeychuck, R. Science of Fullerenes and Carbon Nanotubes: Their Properties and Applications; Dresselhaus, G., Eklund, P.C., Eds.; Academic Press: Cambridge, MA, USA, 1996; pp. Xviii+965. ISBN 0-12-221820-5. [Google Scholar]
- Salvetat, J.-P.; Désarmot, G.; Gauthier, C.; Poulin, P. Mechanical Properties of Individual Nanotubes and Composites. In Understanding Carbon Nanotubes; Springer: Berlin/Heidelberg, Germany, 2006; pp. 439–493. [Google Scholar]
- Popov, V.N. Carbon Nanotubes: Properties and Application. Mater. Sci. Eng. R Rep. 2004, 43, 61–102. [Google Scholar] [CrossRef]
- Raniszewski, G.; Pietrzak, Ł. Optimization of Mass Flow in the Synthesis of Ferromagnetic Carbon Nanotubes in Chemical Vapor Deposition System. Materials 2021, 14, 612. [Google Scholar] [CrossRef] [PubMed]
- Zueva, O.S.; Makshakova, O.N.; Idiyatullin, B.Z.; Faizullin, D.A.; Benevolenskaya, N.N.; Borovskaya, A.O.; Sharipova, E.A.; Osin, Y.N.; Salnikov, V.V.; Zuev, Y.F. Structure and Properties of Aqueous Dispersions of Sodium Dodecyl Sulfate with Carbon Nanotubes. Russ. Chem. Bull. 2016, 65, 1208–1215. [Google Scholar] [CrossRef]
- Fan, Y.-Y.; Kaufmann, A.; Mukasyan, A.; Varma, A. Single- and Multi-Wall Carbon Nanotubes Produced Using the Floating Catalyst Method: Synthesis, Purification and Hydrogen up-Take. Carbon 2006, 44, 2160–2170. [Google Scholar] [CrossRef]
- Öncel, Ç.; Yürüm, Y. Carbon Nanotube Synthesis via the Catalytic CVD Method: A Review on the Effect of Reaction Parameters. Fuller. Nanotub. Carbon Nanostructures 2006, 14, 17–37. [Google Scholar] [CrossRef] [Green Version]
- Prasek, J.; Drbohlavova, J.; Chomoucka, J.; Hubalek, J.; Jasek, O.; Adam, V.; Kizek, R. Methods for Carbon Nanotubes Synthesis. J. Mater. 2011, 21, 15872–15884. [Google Scholar]
- Gårdebjer, S.; Andersson, M.; Engström, J.; Restorp, P.; Persson, M.; Larsson, A. Using Hansen Solubility Parameters to Predict the Dispersion of Nano-Particles in Polymeric Films. Polym. Chem. 2016, 7, 1756–1764. [Google Scholar] [CrossRef]
- Kirkpatrick, S. Percolation and Conduction. Rev. Mod. Phys. 1973, 45, 574–588. [Google Scholar] [CrossRef]
- Stauffer, D.; Aharony, A. Introduction to Percolation Theory; Taylor & Francis: London, UK, 1994; ISBN 9781315274386. [Google Scholar]
- Coleman, J.N.; Curran, S.; Dalton, A.B.; Davey, A.P.; McCarthy, B.; Blau, W.; Barklie, R.C. Percolation-Dominated Conductivity in a Conjugated-Polymer-Carbon-Nanotube Composite. Phys. Rev. B 1998, 58, R7492–R7495. [Google Scholar] [CrossRef]
- Mamunya, Y.P.; Boudenne, A.; Lebovka, N.; Ibos, L.; Candau, Y.; Lisunova, M. Electrical and Thermophysical Behaviour of PVC-MWCNT Nanocomposites. Compos. Sci. Technol. 2008, 68, 1981–1988. [Google Scholar] [CrossRef]
Polymer Matrix | Preparation Method | Filler | Percolation Threshold [wt %] | Reference |
---|---|---|---|---|
PVC | Powder compaction | Ni | 8.5 | [1] |
Cu | 5 | |||
EVA | Compression moulding | CCB (carbon black) | 14 | [14] |
CF (carbon fiber) | 7 | |||
MWCNT (multiwalled carbon nanotubes) | 3 | |||
Phenolic resin | Compression moulding | Graphite | 40 | [15] |
Expandable graphite | 12 | |||
Carbon fiber | 10 | |||
Epoxy resin | Solution mixing/stirring | MWCNT | 0.0025 | [16] |
Polystyrene | Solution mixing/stirring/film casting | MWCNT | ≤3 | [17] |
Poly(ethylene terephthalate) | Solution mixing/compression moulding | MWCNT | 0.9 | [18] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pietrzak, L.; Raniszewski, G.; Szymanski, L. Multiwalled Carbon Nanotubes Polylactide Composites for Electrical Engineering—Fabrication and Electrical Properties. Electronics 2022, 11, 3180. https://doi.org/10.3390/electronics11193180
Pietrzak L, Raniszewski G, Szymanski L. Multiwalled Carbon Nanotubes Polylactide Composites for Electrical Engineering—Fabrication and Electrical Properties. Electronics. 2022; 11(19):3180. https://doi.org/10.3390/electronics11193180
Chicago/Turabian StylePietrzak, Lukasz, Grzegorz Raniszewski, and Lukasz Szymanski. 2022. "Multiwalled Carbon Nanotubes Polylactide Composites for Electrical Engineering—Fabrication and Electrical Properties" Electronics 11, no. 19: 3180. https://doi.org/10.3390/electronics11193180
APA StylePietrzak, L., Raniszewski, G., & Szymanski, L. (2022). Multiwalled Carbon Nanotubes Polylactide Composites for Electrical Engineering—Fabrication and Electrical Properties. Electronics, 11(19), 3180. https://doi.org/10.3390/electronics11193180