Spatial-Temporal Value-of-Information Maximization for Mobile Crowdsensing in Wireless Sensor Networks
Abstract
:1. Introduction
2. Related Works
3. System Model
3.1. Data Quality and Value of Information
- Sum Value: The MAP collects all information from the sensor nodes to make the final decision. The MAP’s payoff is defined as the sum of quality values of all active sensor nodes in the crowdsensing task, i.e.,
- Max Value: When the information requester is risk-seeking, it will be optimistic for the information requester to take the maximum value of the data quality values reported by different sensor nodes. In this case, we define the MAP’s payoff as follows:In spectrum sensing of cognitive radio networks, this model corresponds to the “OR”-rule data fusion strategy. The data quality of each sensor node can be restricted in the set and viewed as a probabilistic indication of the channel occupancy. A larger value of means that the sensor node anticipates the spectrum vacancy with a higher probability. The max-value in (3) implies that the MAP would like to take a higher risk of collision to exploit the licensed channels more aggressively.
- Min Value: In contrast to the max-value in (3), it is risk-aversion for the information requester to seek the minimum of all crowd workers’ data quality values as its payoff:In this case, the information requester becomes sensitive or vulnerable to the worst-case data quality. This is similar to the “AND”-rule data fusion strategy in spectrum sensing of cognitive radio networks. The min-value in (4) implies that the information requester will output the value “0” (i.e., the spectrum is occupied at the PoI) if any sensor node detects a busy spectrum and reported “0” to the information requester. In this case, the information requester becomes very sensitive to the presence of the licensed users. Another example is to detect wildfire by deploying a set of wireless sensor nodes. The information requester will alarm if any sensor node detects the abnormal smoke or temperature.
3.2. Cost Function and the Overall Utility
4. Optimal Recruiting Range of Sensor Nodes
4.1. Sum-Value Maximization
4.2. Max- or Min-Value Maximization
5. Maximizing Aged Value of Information
5.1. Aging Value of Information
5.2. Maximizing the Aged Sum-Value of Information
5.3. Maximizing the Aged Max- and Min-Value of Information
5.4. A Gradient-Based Solution
6. Numerical and Simulation Results
6.1. Utility Curves with Different Recruiting Range
6.2. Utility Maximization with Aging Value of Information
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Appendix A.1. Proof for Proposition 1
Appendix A.2. Proof for Proposition 2
References
- Li, G.; Wang, J.; Zheng, Y.; Franklin, M.J. Crowdsourced data management: A survey. IEEE Trans. Knowl. Data Eng. 2016, 28, 2296–2319. [Google Scholar] [CrossRef] [Green Version]
- Tong, Y.; Zhou, Z.; Zeng, Y.; Chen, L.; Shahabi, C. Spatial crowdsourcing: A survey. VLDB J. 2020, 29, 217–250. [Google Scholar] [CrossRef]
- Qiu, J.; Tian, Z.; Du, C.; Zuo, Q.; Su, S.; Fang, B. A survey on access control in the age of internet of things. IEEE Internet Things J. 2020, 7, 4682–4696. [Google Scholar] [CrossRef]
- Restuccia, F.; Ghosh, N.; Bhattacharjee, S.; Das, S.K.; Melodia, T. Quality of Information in Mobile Crowdsensing: Survey and Research Challenges. ACM Trans. Sens. Netw. 2017, 13, 1–43. [Google Scholar] [CrossRef]
- Jiang, W.; Han, B.; Habibi, M.A.; Schotten, H.D. The Road Towards 6G: A Comprehensive Survey. IEEE Open J. Commun. Soc. 2021, 2, 334–366. [Google Scholar] [CrossRef]
- Wang, Z.; Hu, J.; Wang, Q.; Lv, R.; Wei, J.; Chen, H.; Niu, X. Task-bundling-based incentive for location-dependent mobile crowdsourcing. IEEE Commun. Mag. 2019, 57, 54–59. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Z.; Wang, D.; Zhang, X.; Gupta, B.; Liu, X.; Ma, J. A Secure Decentralized Spatial Crowdsourcing Scheme for 6G-Enabled Network in Box. IEEE Trans. Ind. Inform. 2021, 18, 6160–6170. [Google Scholar] [CrossRef]
- Micholia, P.; Karaliopoulos, M.; Koutsopoulos, I.; Aiello, L.M.; Morales, G.D.F.; Quercia, D. Incentivizing social media users for mobile crowdsourcing. Int. J. Hum.-Comput. Stud. 2017, 102, 4–13. [Google Scholar] [CrossRef] [Green Version]
- Guo, B.; Chen, H.; Nan, W.; Yu, Z.; Xie, X.; Zhang, D.; Zhou, X. TaskMe: Toward a dynamic and quality-enhanced incentive mechanism for mobile crowd sensing. Int. J. Hum.-Comput. Stud. 2017, 102, 14–26. [Google Scholar] [CrossRef]
- Wu, P.; Ngai, E.W.; Wu, Y. Toward a real-time and budget-aware task package allocation in spatial crowdsourcing. Decis. Support Syst. 2018, 110, 107–117. [Google Scholar] [CrossRef]
- Huang, Y.; White, C.; Xia, H.; Wang, Y. A computational cognitive modeling approach to understand and design mobile crowdsourcing for campus safety reporting. Int. J. Hum.-Comput. Stud. 2017, 102, 27–40. [Google Scholar] [CrossRef] [Green Version]
- Zhao, P.; Li, X.; Gao, S.; Wei, X. Cooperative task assignment in spatial crowdsourcing via multi-agent deep reinforcement learning. J. Syst. Archit. 2022, 128, 102551. [Google Scholar] [CrossRef]
- Ma, F.; Liu, X.; Liu, A.; Zhao, M.; Wang, T. A Time and Location Correlation Incentive Scheme for Deep Data Gathering in Crowdsourcing Networks. Wirel. Commun. Mob. Comput. 2018, 2018, 1–22. [Google Scholar] [CrossRef]
- Song, T.; Xu, K.; Li, J.; Li, Y.; Tong, Y. Multi-skill aware task assignment in real-time spatial crowdsourcing. GeoInformatica 2020, 24, 153–173. [Google Scholar] [CrossRef]
- Cheng, P.; Lian, X.; Chen, Z.; Fu, R.; Chen, L.; Han, J.; Zhao, J. Reliable Diversity-Based Spatial Crowdsourcing by Moving Workers. Proc. VLDB Endow. 2015, 8, 1022–1033. [Google Scholar] [CrossRef] [Green Version]
- Zhai, D.; Liu, A.; Chen, S.; Li, Z.; Zhang, X. SeqST-ResNet: A sequential spatial temporal ResNet for task prediction in spatial crowdsourcing. In Proceedings of the International Conference on Database Systems for Advanced Applications, Chiang Mai, Thailand, 22–25 April 2019; pp. 260–275. [Google Scholar]
- Muhammad, A.; Elhattab, M.; Arfaoui, M.A.; Al-Hilo, A.; Assi, C. Age of Information Optimization in a RIS-Assisted Wireless Network. arXiv 2021, arXiv:2103.06405. [Google Scholar]
- Kadota, I.; Modiano, E. Minimizing the age of information in wireless networks with stochastic arrivals. IEEE Trans. Mob. Comput. 2019, 20, 1173–1185. [Google Scholar] [CrossRef]
- Kadota, I.; Sinha, A.; Modiano, E. Optimizing Age of Information in Wireless Networks with Throughput Constraints. In Proceedings of the IEEE INFOCOM 2018—IEEE Conference on Computer Communications, Honolulu, HI, USA, 16–19 April 2018; pp. 1844–1852. [Google Scholar] [CrossRef]
- Abd-Elmagid, M.A.; Pappas, N.; Dhillon, H.S. On the Role of Age of Information in the Internet of Things. IEEE Commun. Mag. 2019, 57, 72–77. [Google Scholar] [CrossRef] [Green Version]
- Yates, R.D.; Sun, Y.; Brown, D.R.; Kaul, S.K.; Modiano, E.; Ulukus, S. Age of information: An introduction and survey. IEEE J. Sel. Areas Commun. 2021, 39, 1183–1210. [Google Scholar] [CrossRef]
- Mankar, P.D.; Abd-Elmagid, M.A.; Dhillon, H.S. Spatial distribution of the mean peak age of information in wireless networks. IEEE Trans. Wirel. Commun. 2021, 20, 4465–4479. [Google Scholar] [CrossRef]
- Katsidimas, I.; Nikoletseas, S.; Raptopoulos, C. Power efficient algorithms for wireless charging under phase shift in the vector model. In Proceedings of the 2019 15th International Conference on Distributed Computing in Sensor Systems (DCOSS), Santorini Island, Greece, 29–31 May 2019; pp. 131–138. [Google Scholar]
- López, O.L.; Alves, H.; Souza, R.D.; Montejo-Sánchez, S.; Fernández, E.M.G.; Latva-Aho, M. Massive wireless energy transfer: Enabling sustainable IoT toward 6G era. IEEE Internet Things J. 2021, 8, 8816–8835. [Google Scholar] [CrossRef]
- Mukase, S.; Xia, K.; Umar, A.; Owoola, E.O. On-Demand Charging Management Model and Its Optimization for Wireless Renewable Sensor Networks. Sensors 2022, 22, 384. [Google Scholar] [CrossRef] [PubMed]
- Dudak, J.; Gaspar, G.; Sedivy, S.; Fabo, P.; Pepucha, L.; Tanuska, P. Serial communication protocol with enhanced properties–securing communication layer for smart sensors applications. IEEE Sens. J. 2018, 19, 378–390. [Google Scholar] [CrossRef]
- Zou, J.; Ye, B.; Qu, L.; Wang, Y.; Orgun, M.; Li, L. A proof-of-trust consensus protocol for enhancing accountability in crowdsourcing services. IEEE Trans. Serv. Comput. 2018, 12, 429–445. [Google Scholar] [CrossRef]
- Zhang, Y.J.A.; Qian, L.; Huang, J. Monotonic Optimization in Communication and Networking Systems. Found. Trends Netw. 2013, 7, 1–75. [Google Scholar] [CrossRef]
- Feijer, D.; Paganini, F. Stability of primal–dual gradient dynamics and applications to network optimization. Automatica 2010, 46, 1974–1981. [Google Scholar] [CrossRef]
- Boyd, S.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, X.; Chen, C.; Zhang, W.; Zeng, C.; Li, C.; Xu, J. Spatial-Temporal Value-of-Information Maximization for Mobile Crowdsensing in Wireless Sensor Networks. Electronics 2022, 11, 3224. https://doi.org/10.3390/electronics11193224
Luo X, Chen C, Zhang W, Zeng C, Li C, Xu J. Spatial-Temporal Value-of-Information Maximization for Mobile Crowdsensing in Wireless Sensor Networks. Electronics. 2022; 11(19):3224. https://doi.org/10.3390/electronics11193224
Chicago/Turabian StyleLuo, Xiaoling, Che Chen, Wenjie Zhang, Chunnian Zeng, Chengtao Li, and Jing Xu. 2022. "Spatial-Temporal Value-of-Information Maximization for Mobile Crowdsensing in Wireless Sensor Networks" Electronics 11, no. 19: 3224. https://doi.org/10.3390/electronics11193224
APA StyleLuo, X., Chen, C., Zhang, W., Zeng, C., Li, C., & Xu, J. (2022). Spatial-Temporal Value-of-Information Maximization for Mobile Crowdsensing in Wireless Sensor Networks. Electronics, 11(19), 3224. https://doi.org/10.3390/electronics11193224