A Five-Level RF-PWM Method with Third and Fifth Harmonic Elimination for All-Digital Transmitters
Abstract
:1. Introduction
2. The Third and Fifth Harmonic Elimination Method for Five-Level RF-PWM
2.1. The Principle of Third and Fifth Harmonic Elimination
2.2. The Generation of the Five-Level RF-PWM Signal
3. Simulation Results
3.1. Simulation Results of the Single-Tone Signal
3.2. Simulation Results of the 16QAM Signal
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Prata, A.; Cordeiro, R.F.; Dinis, D.C.; Oliveira, A.S.R.; Vieira, J.; Carvalho, N.B. All-digital transceivers—Recent advances and trends. In Proceedings of the IEEE International Conference on Electronics, Circuits and Systems, Monte Carlo, Monaco, 11–14 December 2016. [Google Scholar]
- Nuyts, P.A.J.; Reynaert, P.; Dehaene, W. Frequency-domain analysis of digital PWM-based RF modulators for flexible wireless transmitters. IEEE Trans. Circuits Syst. I Regul. Pap. 2014, 61, 238–246. [Google Scholar] [CrossRef]
- Yang, S.Y.; Yang, J.; Huang, L.Y.; Bai, J.L.; Zhang, X.Y. A Dual-Band RF All-Digital Transmitter Based on MPWM Encoding. IEEE Trans. Microw. Theory Tech. 2022, 70, 1745–1756. [Google Scholar] [CrossRef]
- Dinis, D.C.; Rui, F.C.; Oliveira, A.S.R. A fully parallel architecture for designing frequency-agile and real-time reconfigurable FPGA-based RF digital transmitters. IEEE Trans. Microw. Theory Tech. 2018, 66, 1489–1499. [Google Scholar] [CrossRef]
- Yao, F.; Zhou, Q.; Wei, Z. A novel multilevel RF-PWM method with active-harmonic elimination for all-digital transmitters. IEEE Trans. Microw. Theory Tech. 2018, 66, 3360–3373. [Google Scholar] [CrossRef]
- Nuyts, P.A.J.; Reynaert, P.; Dehaene, W. A fully digital PWM based 1 to 3 GHz multistandard transmitter in 40-nm CMOS. In Proceedings of the 2013 IEEE Radio Frequency Integrated Circuits Symposium, Seattle, WA, USA, 2–4 June 2013. [Google Scholar]
- Chen, Z.; Yang, J.; Zhang, X.; Bai, J.; Feng, T.; Tang, J.; Chen, G.; Jiang, Z. Mathematical Model and Reference Frequency Optimization for Digital Dual-Band Pulsewidth Modulation. In Proceedings of the IEEE MTT-S International Wireless Symposium, Shanghai, China, 20–23 September 2020. [Google Scholar]
- Yang, S.Y.; Yang, J.; Zhao, J.; Zhang, X.Y. Clean bandwidth improvement of MPWM encoding method for RF all-digital transmitter. IEEE Trans. Circuits Syst. II Exp. Briefs 2021, 68, 2404–2408. [Google Scholar] [CrossRef]
- Silva, N.V.; Oliveira, A.S.R.; Carvalho, N.B. Design and optimization of flexible and coding efficient all-digital RF transmitters. IEEE Trans. Microw. Theory Tech. 2013, 61, 625–632. [Google Scholar] [CrossRef]
- Raab, F.H. Radio frequency pulsewidth modulation. IEEE Trans. Commun. 1973, 21, 958–966. [Google Scholar] [CrossRef]
- Pasha, M.T.; Haque, M.F.U.; Ahmad, J.; Johansson, T. A Modified All-Digital Polar PWM Transmitter. IEEE Trans. Circuits Syst. I Regul. Pap. 2018, 65, 758–768. [Google Scholar] [CrossRef]
- Kulkarni, S.; Kazi, I.; Seebacher, D.; Singerl, P.; Dielacher, F.; Dehaene, W.; Reynaert, P. Multi-standard wideband OFDM RF-PWM transmitter in 40 nm CMOS. In Proceedings of the IEEE European Solid-State Circuits Conference, Graz, Austria, 14–18 October 2015. [Google Scholar]
- Huhn, F.; Wentzel, A.; Heinrich, W. A Reconfigurable Modulator for Digital Outphasing Transmitters. In Proceedings of the IEEE MTT-S International Microwave Symposium, Boston, MA, USA, 2–7 June 2019. [Google Scholar]
- Chierchie, F.; González, G.J.; Morales, J.I.; Paolini, E.E.; Cousseau, J.; Mandolesi, P.S. Baseband Model for Uniformly Sampled RF-PWM. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 2816–2824. [Google Scholar] [CrossRef]
- Cho, K.; Gharpurey, R. A 25.6 dBm wireless transmitter using RF-PWM with carrier switching in 130-nm CMOS. In Proceedings of the IEEE Radio Frequency Integrated Circuits Symposium, Phoenix, AZ, USA, 17–19 May 2015. [Google Scholar]
- Francois, B.; Nuyts, P.A.J.; Dehaene, W.; Reynaert, P. Extending dynamic range of RF PWM transmitters. Electron. Lett. 2013, 49, 430–432. [Google Scholar] [CrossRef]
- Zhu, Q.; Ma, R.; Duan, C.; Teo, K.H.; Parsons, K. A 5-level discrete-time power encoder with measured coding efficiency of 70% for 20-MHz LTE digital transmitter. In Proceedings of the IEEE MTT-S International Microwave Symposium Digest, Tampa, FL, USA, 1–6 June 2014. [Google Scholar]
- Yang, K.; Zhang, Q.; Zhang, J.; Yuan, R.; Guan, Q.; Yu, W.; Wang, J. Unified Selective Harmonic Elimination for Multilevel Converters. IEEE Trans. Power Electron. 2017, 32, 1579–1590. [Google Scholar] [CrossRef]
- El Houda Gabour, N.; Habbi, F.; Bounekhla, M.; Boudissa, E.G. Enhanced Harmonic Elimination Using Genetic Algorithm Optimization in Multilevel Inverters. In Proceedings of the IEEE International Multi-Conference on Systems, Signals and Devices, SSD, Monastir, Tunisia, 22–25 March 2021. [Google Scholar]
- Sulong, M.M.S.; Saifizi, M.; Mustafa, W.A.; Aihsan, M.Z. Harmonic Elimination Simulation of Seven Level Cascaded H-Bridge Inverter Based on Newton Raphson Method. In Proceedings of the 12th National Technical Seminar on Unmanned System Technology 2020; Springer: Singapore, 2020. [Google Scholar]
- Fu, H.; Zhou, Q.; Zhu, L.; Wei, Z.; Zhang, J. A Pulse Waveform Control Method for Multiple Harmonic Elimination of Multilevel RF-PWM. In Proceedings of the IEEE MTT-S International Wireless Symposium, Harbin, China, 12–15 August 2022. [Google Scholar]
- Lai, L.; Zhang, R.; Cheng, K.; Xia, Z.; Wei, C.; Wei, K.; Luo, W.; Liu, X. Monolithic Integrated High Frequency GaN DC-DC Buck Converters with High Power Density Controlled by Current Mode Logic Level Signal. Electronics 2020, 9, 1540. [Google Scholar] [CrossRef]
Parameters of Sub-Pulses | Simplified Conditions | Parameter Combination 1 | Parameter Combination 2 | Parameter Combination 3 | Parameter Combination 4 |
---|---|---|---|---|---|
Center position | t1 = t2 | φ(t)/wc + Tc/12 | φ(t)/wc Tc/12 | φ(t)/wc + 3Tc/20 | φ(t)/wc + Tc/20 |
t3 = t4 | φ(t)/wc − Tc/12 | φ(t)/wc − Tc/12 | φ(t)/wc − 3Tc/20 | φ(t)/wc − Tc/20 | |
Duty-cycle | d1 = d3 | 1/5 + arccos(a(t))/π | 2/5 + arccos(a(t))/π | 1/3 + arccos(a(t))/π | 1/3 + arccos(a(t))/π |
d2 = d4 | 1/5 – arccos(a(t))/π | 2/5 – arccos(a(t))/π | 1/3 – arccos(a(t))/π | 1/3 – arccos(a(t))/π |
Performance | SI | SII | SIII |
---|---|---|---|
Fundamental power (dB) | −6.45 | −7.41 | −7.97 |
Coding Efficiency (%) | 89.95 | 85.69 | 77.51 |
Third harmonic suppression(dBc) | −22.90 | −51.99 | −46.24 |
Fifth harmonic suppression(dBc) | −25.60 | −18.43 | −54.05 |
ACPR (dBc) | −50.27 | −50.44 | −47.87 |
EVM (%) | 0.84 | 0.81 | 0.87 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, H.; Zhou, Q.; Zhu, L.; Chen, Z.; Wei, Z.; Zeng, S. A Five-Level RF-PWM Method with Third and Fifth Harmonic Elimination for All-Digital Transmitters. Electronics 2022, 11, 3257. https://doi.org/10.3390/electronics11193257
Fu H, Zhou Q, Zhu L, Chen Z, Wei Z, Zeng S. A Five-Level RF-PWM Method with Third and Fifth Harmonic Elimination for All-Digital Transmitters. Electronics. 2022; 11(19):3257. https://doi.org/10.3390/electronics11193257
Chicago/Turabian StyleFu, Haoyang, Qiang Zhou, Lei Zhu, Zhang Chen, Zhihu Wei, and Siyu Zeng. 2022. "A Five-Level RF-PWM Method with Third and Fifth Harmonic Elimination for All-Digital Transmitters" Electronics 11, no. 19: 3257. https://doi.org/10.3390/electronics11193257
APA StyleFu, H., Zhou, Q., Zhu, L., Chen, Z., Wei, Z., & Zeng, S. (2022). A Five-Level RF-PWM Method with Third and Fifth Harmonic Elimination for All-Digital Transmitters. Electronics, 11(19), 3257. https://doi.org/10.3390/electronics11193257