Novel Motor-Kinetic-Energy-Based Power Pulsation Buffer Concept for Single-Phase-Input Electrolytic-Capacitor-Less Motor-Integrated Inverter System
Abstract
:1. Introduction
Air Flow Rate at Pressure | 850 L min−1, 0.83 MPa |
Nominal Speed () | 3700 rpm |
Nominal Mech. Power, Grid () | kW |
Nominal Mech. Power, Batt. () | kW |
Nominal Grid Voltage () | 400 Vrms |
Grid Voltage Range () | 280 Vrms to 530 Vrms |
Grid Frequency () | 50 Hz |
Battery Voltage Range () | 70 Vdc to 120 Vdc |
EMI Standard (Input) | CISPR 11/Class A [8] |
2. Topology Selection and Proposed MPPB Concept and Control
2.1. Topology
2.2. MPPB Concept
2.2.1. Conventional Operation with an Electrolytic Capacitor
2.2.2. Motor Power Pulsation Buffer Concept
2.3. Control
2.3.1. Conventional Control Overview
2.3.2. MPPB Control Overview
2.3.3. MPPB Control Details
2.3.4. Simulation Results
2.4. Performance Evaluation
2.4.1. Time-Domain Waveforms
2.4.2. Motor Loss Analysis
2.4.3. Inverter Loss Analysis
3. System Design and Implementation
3.1. Motor Selection and Characterization
3.2. Converter Design
3.2.1. Inverter Design
Motor Inertia | mkgm2 | Siemens 1FT7-084 [65] | |
CM-Motor Capacitance | nF | Siemens 1FT7-084 (measured) | |
Inverter Transistors | , , , , , | 16 m kV | Cree C3M0016120K [70] |
PFC Unfolder Transistors | , | 16 m kV | Cree C3M0016120K [70] |
PFC Boost Transistors | , , , , , | / kV | Cree C3M0032120K [71] |
DC-Link Capacitance | 3 × 20 μF/900 V | Epcos B32776E9206K000, Foil | |
Boost Inductor | 428 μH (each) | 4 E-Cores/30 Turns Flat Wire | |
DM-Filter Capacitance | 4 × 1 μF | Epcos B32914A5105M000, X1 | |
DM-Filter Capacitance | 1 μF | Epcos B32914A5105M000, X1 | |
DM-Filter Inductance | (each) | Wuerth 74436410470 | |
CM-Filter Capacitance | 2 × 20 n F | Vishay 440LS20-R, Y1 | |
CM-Filter Capacitance | 2 × 20 n F (each) | Vishay 440LS20-R, Y1 | |
CM-Filter Inductance | 6 × VAC L2025-W380, 1 Turn | ||
CM-Filter Inductance | mH | VAC L2045-V102, 9 Turns | |
CM-Filter Inductance | mH | VAC L2045-V102, 7 Turns |
3.2.2. DC-Link Capacitor Selection
3.2.3. PFC Rectifier Design
3.2.4. EMI Filter
3.3. Volume and Loss Distribution
3.4. Detailed Motor Integration and Implementation
4. Hardware Demonstration Verification
4.1. Time-Domain Waveforms and Operation
4.2. Efficiency
4.3. Conducted EMI
4.4. Transient Response
5. Extended Functionality
5.1. Operation with a Distorted Grid Voltage
5.2. Operation under Grid Voltage Sag or Interruption
5.2.1. Voltage Sag
- A large specified grid tolerance (of approximately ; see Figure 1b) to cover the majority of sag cases with full-power operation;
- Even with the voltage outside of the specifications, the control structure detailed in Figure 18 will cover the voltage sag condition at reduced power, where the grid current limiter freezes speed control once the limit is reached. The control scheme guarantees rapid recovery, as shown later.
5.2.2. Grid Interruption
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CM | Common-Mode |
DM | Differential-Mode |
DUT | Device-Under-Test |
EMF | Electromotive Force |
EMI | Electromagnetic Interference |
IGBT | Insulated Gate Bipolar Transistor |
MAF | Moving-Average Filter |
MOSFET | Metal Oxide Semiconductor Field Effect Transistor |
MPPB | Motor-Integrated Power Pulsation Buffer |
PCB | Printed Circuit Board |
PFC | Power Factor Correction |
PLL | Phase-Locked Loop |
PMSM | Permanent Magnet Synchronous Motor |
PPB | Power Pulsation Buffer |
PWM | Pulse-Width-Modulation |
RMS | Root Mean Square |
SiC | Silicon Carbide |
SOGI | Second-Order Generalized Integrator |
VSD | Variable-Speed Drive |
ZVS | Zero-Voltage Switching |
List of Symbols
Auxiliary variable | |
, | DM-filter capacitors/capacitances |
CM-motor capacitance | |
, | CM-filter capacitors/capacitances |
DC-link capacitor/capacitance | |
, | Closed-loop transfer functions |
, , | Inverter duty-cycles |
Boost duty-cycle | |
Kinetic energy of the drivetrain | |
Magnetic energy of the q-axis motor inductance | |
Switching energy loss of a half-bridge | |
, | Mechanical rotor angles |
, | Converter system efficiency for MPPB/conventional operation |
, | Motor efficiency for MPPB/conventional operation |
, | Drive system efficiency for MPPB/conventional operation |
Bandwidth | |
Crossover frequency | |
Electrical motor frequency | |
Minimum motor frequency in stationary operation with constant torque | |
Cutoff-frequency of a time-delay-equivalent low-pass filter | |
Grid frequency | |
, , | Frequencies of harmonic motor current components |
Inverter switching frequency | |
Power pulsation frequency | |
Cutoff-frequency of a PI-controller | |
PLL frequency | |
Transfer function: time delay | |
Transfer function: time-delay-equivalent low-pass filter | |
Transfer function: filter | |
Transfer function: integrator | |
Transfer function: PI-controller | |
Battery current | |
Instantaneous DC-link capacitor current | |
DC-link capacitance capacitor amplitude | |
Low-frequency rms DC-link capacitor current | |
Instantaneous grid current | |
Grid current amplitude | |
Maximum grid current amplitude | |
, | Input current |
Instantaneous boost inductor current | |
Motor current space vector magnitude in conventional operation | |
, , | Amplitudes of the motor current harmonics in MPPB operation |
, , | Instantaneous motor currents |
Absolute global average current of phase a | |
Instantaneous d-axis motor current | |
Maximum motor current amplitude | |
, | Instantaneous/average q-axis motor current |
RMS phase current in phase a | |
, | Absolute average phase current for MPPB/conventional operation |
, | RMS phase current for MPPB/conventional operation |
, | Peak phase current for MPPB/conventional operation |
Motor inertia | |
k | Load torque exponent |
, , | Switching loss coefficients |
Proportional controller gain | |
Torque constant | |
Voltage constant | |
Boost inductor | |
, , | CM-filter inductors/inductances |
d-axis motor inductance | |
DM-filter inductor/inductance | |
EMI-filter inductance | |
q-axis motor inductance | |
m | Index variable |
n | Motor speed |
Motor speed ripple amplitude | |
, | Open-loop transfer functions |
Inverter operating state (on/off) | |
PFC rectifier operating state (on/off) | |
p | Number of pole pairs |
Mechanical power | |
Mechanical power in DC-operation | |
, | Air pressures |
, | Instantaneous/average capacitor power |
Averaged capacitor power | |
, | Instantaneous/average grid power |
AC component of the grid power | |
Average input power | |
Instantaneous inverter power | |
Instantaneous q-axis magnetization power | |
Averaged q-axis magnetization power | |
, | Instantaneous/average motor power |
Instantaneous PFC rectifier power | |
Reference losses per phase | |
Drive system losses | |
Losses of the electronic circuitry | |
, | Inverter losses for MPPB/conventional operation |
Inverter conduction losses | |
Inverter diode conduction losses | |
, | Losses of MOSFET inverter with limitation of switching transitions |
, | Losses of MOSFET inverter with output filter |
, | Losses of IGBT inverter |
Inverter switching losses | |
, | Motor losses for MPPB/conventional operation |
, , | Local average of the motor phase winding losses |
, , | Global average of the motor phase winding losses |
Capacitive motor losses | |
Motor conduction losses | |
No-load motor losses | |
, | Average phase conduction losses for MPPB/conventional operation |
Maximum phase losses | |
Rectifier losses | |
EMI filter losses | |
Rectifier half-bridge losses | |
Rectifier inductor losses | |
Unfolder losses | |
Phase margin | |
Phase-shift | |
Permanent magnet flux linkage | |
Stator winding resistance | |
(Differential) on-resistance | |
Drain-source resistance of a MOSFET | |
s | Laplace variable |
Unfolder switching state | |
t | Time |
, | Time-shift |
, , | Transistors of the inverter |
, , | Transistors of the PFC rectifier |
Transistor of the unfolder | |
Acceleration torque | |
Control computation time | |
Time delay | |
Feedforward load torque | |
Grid period | |
Inverter switching period | |
Load torque | |
, | Instantaneous, average motor torque |
MAF-filter averaging time | |
No-load motor torque | |
Power pulsation period | |
PWM period | |
Delay time constant | |
Equivalent delay time constant | |
Filter time constant | |
Integrator time constant | |
, | Integral controller gain |
PI-controller time constant | |
Thermal time constant | |
PLL-based grid angle | |
Motor terminal voltage slope | |
Switch-node voltage slope | |
Approximated q-axis voltage | |
, | Components of the orthogonal voltage system |
Battery voltage | |
Capacitor voltage ripple amplitude | |
, | Instantaneous/average DC-link voltage |
Averaged DC-link voltage | |
DC-link voltage ripple amplitude | |
AC-component of the DC-link voltage | |
, | dq-decoupling terms |
MOSFET drain-source voltage | |
Forward voltage drop | |
Instantaneous grid voltage | |
Grid voltage amplitude | |
, | Positive and negative gate driver voltage |
, | Input voltage |
Instantaneous boost inductor voltage | |
Motor inductance d-axis voltage | |
Measured HF voltage noise | |
Motor inductance q-axis voltage | |
, | Motor d-/q-axis voltage components |
Voltage induced by the revolving rotor field | |
Voltage peak derived by SOGI | |
Noise voltage | |
Air flow rate | |
Drive system volume | |
Instantaneous motor speed | |
Motor speed ripple amplitude | |
Average motor speed | |
Minimum average motor speed in stationary operation with constant torque | |
Angular crossover frequency | |
Integral controller gain | |
Angular power pulsation frequency |
Appendix A. Low-Speed Operation with Constant Load Torque
Appendix B. Control Design and Enhancements
Appendix B.1. Motor Current Control Loop
Appendix B.2. Motor Current Controller Design
Appendix B.3. Improvements to the Motor Current Controller: Feedforward Delay Reduction
Appendix B.4. Improvements to the DC-Link Voltage Controller
Appendix C. Phase Current Analysis
Appendix C.1. RMS Current Stress
Appendix C.1.1. Case A, fE > fP
Appendix C.1.2. Case B, fE = fP
Condition | / | / | ||||||
---|---|---|---|---|---|---|---|---|
(a) | > | > | 1 | |||||
(b) | = | 1 | ||||||
(c) | > | < | 1 | |||||
(d) | − | |||||||
(e) | > | < | 1 |
Appendix C.1.3. Case C, fP/2 < fE < fP
Appendix C.1.4. Case D, fP/2 = fE
Appendix C.1.5. Case E, fEmin < fE < fP/2
Appendix C.2. Absolute Average Current
References
- Air Compressor for Original Equipment Manufacturers (OEM)—Oil Free. Datasheet, SRL-7.5CB. Available online: https://airtechnology.hitachi-industrial.eu/_Resources/Persistent/6/6/e/7/66e7e0f4ef2f709de69471fdba4455f8660f8455/AirCompressor_brochure_web.pdf (accessed on 7 October 2021).
- Blunier, B.; Pucci, M.; Cirrincione, G.; Cirrincione, M.; Miraoui, A. A Scroll Compressor with a High-Performance Sensorless Induction Motor Drive for the Air Management of a PEMFC System for Automotive Applications. IEEE Trans. Veh. Technol. 2008, 57, 3413–3427. [Google Scholar] [CrossRef]
- Çadirci, I.; Varma, S.; Ermis, M.; Gülsoy, T. A 20 kW, 20 kHz Unity Power Factor Boost Converter for Three-Phase Motor Drive Applications from an Unregulated Single-Phase Supply. IEEE Trans. Energy Convers. 1999, 14, 471–478. [Google Scholar] [CrossRef]
- Swamy, M.; Guddanti, C. An Improved Single-Phase Active-Front-End Rectifier System for Use with Three-Phase Variable-Frequency Drives. In Proceedings of the IEEE Applied Power Electronics Conference and Exposition (APEC), Fort Worth, TX, USA, 16–20 March 2014; pp. 1558–1564. [Google Scholar] [CrossRef]
- Jacobina, C.B.; Dos Santos, E.C.; Rocha, N.; Fabrício, E.L.L. Single-Phase to Three-Phase Drive System Using Two Parallel Single-Phase Rectifiers. IEEE Trans. Power Electron. 2010, 25, 1285–1295. [Google Scholar] [CrossRef]
- Kanemoto, Y.; Ren, Z.; Hase, M.; Tanaka, H.; Iyozumi, A.; Tsuchiya, T.; Chiba, K.; Tashiro, K. New Energy-Saving Air Compressors. Hitachi Review: Environmentally Conscious Technology in Industrial Fields Aiming for a Low-Carbon Society. 2017, Volume 66, Number 5. pp. 530–535. Available online: https://www.hitachi.com/rev/archive/2017/r2017_05/pdf/P102-107_R5-10.pdf (accessed on 7 October 2021).
- Lee, Y.; Ha, J. Power Enhancement of Dual Inverter for Open-End Permanent Magnet Synchronous Motor. In Proceedings of the IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA, 17–21 March 2013; pp. 1545–1551. [Google Scholar] [CrossRef]
- CISPR 11; Industrial, Scientific and Medical Equipment—Radio-Frequency Disturbance Characteristics—Limits and Methods of Measurement. 2017; Unpublished work.
- Mousavi Gazafrudi, S.M.; Tabakhpour Langerudy, A.; Fuchs, E.F.; Al-Haddad, K. Power Quality Issues in Railway Electrification: A Comprehensive Perspective. IEEE Trans. Ind. Electron. 2015, 62, 3081–3090. [Google Scholar] [CrossRef]
- Marcos-Pastor, A.; Vidal-Idiarte, E.; Cid-Pastor, A.; Martínez-Salamero, L. Minimum DC-Link Capacitance for Single-Phase Applications with Power Factor Correction. IEEE Trans. Ind. Electron. 2020, 67, 5204–5208. [Google Scholar] [CrossRef]
- Li, Y.; Takahashi, T. A Digitally Controlled 4 kW Single-Phase Bridgeless PFC Circuit for Air Conditioner Motor Drive Applications. In Proceedings of the IEEE International Power Electronics and Motion Control Conference (IPEMC), Shanghai, China, 14–16 August 2006; pp. 1–5. [Google Scholar] [CrossRef]
- Lee, W.; Li, S.; Han, D.; Sarlioglu, B.; Minav, T.A.; Pietola, M. A Review of Integrated Motor Drive and Wide-Bandgap Power Electronics for High-Performance Electro-Hydrostatic Actuators. IEEE Trans. Transp. Electrif. 2018, 4, 684–693. [Google Scholar] [CrossRef]
- Hanigovszki, N.; Landkildehus, J.; Spiazzi, G.; Blaabjerg, F. An EMC Evaluation of the Use of Unshielded Motor Cables in AC Adjustable Speed Drive Applications. IEEE Trans. Power Electron. 2006, 21, 273–281. [Google Scholar] [CrossRef]
- Xu, Y.; Yuan, X.; Ye, F.; Wang, Z.; Zhang, Y.; Diab, M.; Zhou, W. Impact of High Switching Speed and High Switching Frequency of Wide-Bandgap Motor Drives on Electric Machines. IEEE Access 2021, 9, 82866–82880. [Google Scholar] [CrossRef]
- Janjic, B.; Ebelt, G.; Mades, J.; Di Santo, F.; Frigo, A.; Verlato, G.; Prearo, C. Highly Integrated Synchronous Reluctance Motor Drive System with SiC-MOSFETs. In Proceedings of the European Conference on Power Electronics and Applications (EPE-ECCE), Riga, Latvia, 17–21 September 2018; pp. 1–9. [Google Scholar]
- Deng, X.; Mohamed, M.A.S.; Lambert, S.; Mecrow, B. Development of a High-Speed, Permanent Magnet, SiC-Based Drive with Integrated Input Filters. IEEE Trans. Energy Convers. 2020, 35, 863–874. [Google Scholar] [CrossRef]
- Gasperi, M.L. Life Prediction Model for Aluminum Electrolytic Capacitors. In Proceedings of the Industry Applications Society Annual Meeting (IAS), San Diego, CA, USA, 6–10 October 1996; pp. 1347–1351. [Google Scholar] [CrossRef]
- Persson, E.; Wilhelm, D. Gate Drive Concept for dv/dt Control of GaN GIT-Based Motor Drive Inverters. In Proceedings of the IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 12–18 December 2020; pp. 27.6.1–27.6.4. [Google Scholar] [CrossRef]
- Imam, A.M.; Habetler, T.G.; Harley, R.G.; Divan, D.M. Condition Monitoring of Electrolytic Capacitor in Power Electronic Circuits using Adaptive Filter Modeling. In Proceedings of the IEEE Power Electronics Specialists Conference (PESC), Dresden, Germany, 16 June 2005; pp. 601–607. [Google Scholar] [CrossRef]
- Ershad, N.F.; Mehrjardi, R.T. A Low Cost Single-Phase to Three-Phase Power Converter for Low-Power Motor Drive Applications. In Proceedings of the IEEE Texas Power and Energy Conference (TPEC), College Station, TX, USA, 8–9 February 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Itoh, J.I.; Ohtani, N. Square-Wave Operation for a Single-Phase-PFC Three-Phase Motor Drive System without a Reactor. IEEE Trans. Ind. Appl. 2011, 47, 805–811. [Google Scholar] [CrossRef]
- Chandekar, V.S.; Chaudhari, M.A.; Chakravarthi, V.K. A Low Cost Three-Phase Induction Motor Drive Operated on Single-Phase Input Source. In Proceedings of the International Conference on Smart Electric Drives and Power System (ICSEDPS), Nagpur, India, 12–13 June 2018; pp. 375–379. [Google Scholar] [CrossRef]
- Haider, M.; Bortis, D.; Kolar, J.W.; Ono, Y. Novel Sinusoidal Input Current Single-to-Three-Phase Z-Source Buck+Boost AC/AC Converter. In Proceedings of the IEEE International Power Electronics and Motion Control Conference (ECCE-Asia), Niigata, Japan, 20–24 May 2018; pp. 4080–4087. [Google Scholar] [CrossRef]
- Nakata, Y.; Itoh, J.I. An Experimental Verification and Analysis of a Single-Phase to Three-Phase Matrix Converter using PDM Control Method for High-Frequency Applications. In Proceedings of the IEEE International Conference on Power Electronics and Drive Systems (PEDS), Singapore, 5–8 December 2011; pp. 1084–1089. [Google Scholar] [CrossRef]
- Ohnuma, Y.; Itoh, J.I. Novel Control Strategy for Single-Phase to Three-Phase Power Converter Using an Active Buffer. In Proceedings of the IEEE International Power Electronics and Motion Control Conference (IPEMC), Barcelona, Spain, 8–10 September 2009; pp. 1–10. [Google Scholar] [CrossRef]
- Ohnuma, Y.; Itoh, J.I. A Control Method for a Single-to-Three-Phase Power Converter with an Active Buffer and a Charge Circuit. In Proceedings of the IEEE Energy Conversion Congress and Exposition (ECCE), Atlanta, GA, USA, 12–16 September 2010; pp. 1801–1807. [Google Scholar] [CrossRef]
- Takahashi, H.; Hisamichi, R.; Haga, H. High Power Factor Control for Current-Source Type Single-Phase to Three-Phase Matrix Converter. In Proceedings of the IEEE Energy Conversion Congress and Exposition (ECCE), San Jose, CA, USA, 20–24 September 2009; pp. 3071–3076. [Google Scholar] [CrossRef]
- Haider, M.; Bortis, D.; Kolar, J.W.; Ono, Y. Sinusoidal Input Current and Average Speed Control of a Single-Phase Supplied Three-Phase Inverter Drive Without Electrolytic Capacitor. In Proceedings of the IEEE International Power Electronics and Motion Control Conference (IPEMC), Budapest, Hungary, 26–30 August 2018; pp. 756–763. [Google Scholar] [CrossRef]
- Jung, H.S.; Chee, S.J.; Sul, S.K.; Park, Y.J.; Park, H.S.; Kim, W.K. Control of Three-Phase Inverter for AC Motor Drive with Small DC-Link Capacitor Fed by Single-Phase AC Source. IEEE Trans. Ind. Appl. 2014, 50, 1074–1081. [Google Scholar] [CrossRef]
- Inazuma, K.; Ohishi, K.; Haga, H. High-Power-Factor Control for Inverter Output Power of IPM Motor Driven by Inverter System Without Electrolytic Capacitor. In Proceedings of the IEEE International Symposium on Industrial Electronics (ISIE), Gdansk, Poland, 27–30 June 2011; pp. 619–624. [Google Scholar] [CrossRef]
- Wang, G.; Zhao, N.; Qi, J.; Li, C.; Xu, D. High Power Factor Control of IPMSM Drive System Without Electrolytic Capacitor. In Proceedings of the IEEE International Power Electronics and Motion Control Conference (ECCE-Asia), Hefei, China, 22–26 May 2016; pp. 379–383. [Google Scholar] [CrossRef]
- Singh, B.; Singh, B.N.; Chandra, A.; Al-Haddad, K.; Pandey, A.; Kothari, D.P. A Review of Single-Phase Improved Power Quality AC-DC Converters. IEEE Trans. Ind. Electron. 2003, 50, 962–981. [Google Scholar] [CrossRef] [Green Version]
- Jacoboski, M.J.; de Bastiani Lange, A.; Heldwein, M.L. Closed-Form Solutions for Core and Winding Losses Calculation in Single-Phase Boost PFC Rectifiers. In Proceedings of the Southern Power Electronics Conference (SPEC), Santos, Brazil, 1–4 December 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Nitzsche, M.; Lu, S.; Zehelein, M.; Ruthardt, J.; Roth-Stielow, J. Comprehensive Comparison of 99% Efficient Totem-Pole PFC with Fixed (PWM) or Variable (TCM) Switching Frequency. In Proceedings of the International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management (PCIM), Nürnberg, Germany, 7–8 July 2020; pp. 207–214. [Google Scholar]
- Haider, M.; Azurza-Anderson, J.; Nain, N.; Zulauf, G.; Kolar, J.W.; Xu, D.; Deboy, G. Analytical Calculation of the Residual ZVS Losses of TCM-Operated Single-Phase PFC Rectifiers. IEEE Open J. Power Electron. 2021, 2, 250–264. [Google Scholar] [CrossRef]
- Prest, R.B.; van Wyk, J.D.; Schultz, J. Development of a Three-Phase Variable Speed Drive System for a Battery Fed Underground Mining Locomotive. In Proceedings of the International Conference on Power Electronics and Variable-Speed Drives, London, UK, 13–15 July 1988; pp. 233–236. [Google Scholar]
- Kaufhold, M.; Aninger, H.; Berth, M.; Speck, J.; Eberhardt, M. Electrical Stress and Failure Mechanism of the Winding Insulation in PWM-Inverter-Fed Low-Voltage Induction Motors. IEEE Trans. Ind. Electron. 2000, 47, 396–402. [Google Scholar] [CrossRef]
- Haider, M.; Guacci, M.; Bortis, D.; Kolar, J.W.; Ono, Y. Analysis and Evaluation of Active/Hybrid/Passive dv/dt-Filter Concepts for Next Generation SiC-Based Variable Speed Drive Inverter Systems. In Proceedings of the IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 11–15 October 2020; pp. 4923–4930. [Google Scholar] [CrossRef]
- Aluminum Electrolytic Capacitors: B43742, B43762. Datasheet. Available online: https://www.tdk-electronics.tdk.com/inf/20/30/db/aec/B43742_B43762.pdf (accessed on 7 October 2021).
- Gasperi, M.L. Life Prediction Modeling of Bus Capacitors in AC Variable-Frequency Drives. IEEE Trans. Ind. Appl. 2005, 41, 1430–1435. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, Y.; Su, M.; Xiong, W.; Yang, J. Review of Active Power Decoupling Topologies in Single-Phase Systems. IEEE Trans. Power Electron. 2016, 31, 4778–4794. [Google Scholar] [CrossRef]
- Neumayr, D.; Bortis, D.; Kolar, J.W. Ultra-Compact Power Pulsation Buffer for Single-Phase DC/AC Converter Systems. In Proceedings of the IEEE International Power Electronics and Motion Control Conference (ECCE-Asia), Hefei, China, 22–26 May 2016; pp. 1–10. [Google Scholar] [CrossRef]
- Ghosh, M.; Mitova, R.; Srikanth, R.; Wang, M.X.; Klikic, D. Novel Active Ripple Filtering Schemes used in Little Box Inverter. In Proceedings of the International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management (PCIM), Nuremberg, Germany, 16–18 May 2017; pp. 1609–1616. [Google Scholar]
- Qin, S.; Lei, Y.; Barth, C.; Liu, W.C.; Pilawa-Podgurski, R.C.N. A High Power Density Series-Stacked Energy Buffer for Power Pulsation Decoupling in Single-Phase Converters. IEEE Trans. Power Electron. 2017, 32, 4905–4924. [Google Scholar] [CrossRef]
- Lee, K.; Ha, J.I. Single-Phase Inverter Drive for Interior Permanent Magnet Machines. IEEE Trans. Power Electron. 2017, 32, 1355–1366. [Google Scholar] [CrossRef]
- Szabados, B.; Schaibie, U. Peak Power Bidirectional Transfer from High Speed Flywheel to Electrical Regulated Bus Voltage System: A Practical Proposal for Vehicular Technology. IEEE Trans. Energy Convers. 1998, 13, 34–41. [Google Scholar] [CrossRef]
- Sough, M.L.; Depernet, D.; Dubas, F.; Boualem, B.; Espanet, C. PMSM and Inverter Sizing Compromise applied to Flywheel for Railway Application. In Proceedings of the IEEE Vehicle Power and Propulsion Conference (VPPC), Lille, France, 1–3 September 2010; pp. 1–5. [Google Scholar] [CrossRef]
- Diaz-Gonzalez, F.; Bianchi, F.D.; Sumper, A.; Gomis-Bellmunt, O. Control of a Flywheel Energy Storage System for Power Smoothing in Wind Power Plants. IEEE Trans. Energy Convers. 2014, 29, 204–214. [Google Scholar] [CrossRef]
- Zhou, L.; Qi, Z.P. Modeling and Simulation of Flywheel Energy Storage System with IPMSM for Voltage Sags in Distributed Power Network. In Proceedings of the International Conference of Mechatronics and Automation, Changchun, China, 9–12 August 2009; pp. 5046–5051. [Google Scholar] [CrossRef]
- Li, Y.; Liu, M.; Lau, J. Development of a Variable Speed Compressor Power Model for Single-Stage Packaged DX Rooftop Units. Appl. Therm. Eng. 2015, 78, 110–117. [Google Scholar] [CrossRef]
- Xie, M.; Zhu, C.; He, L.; Wen, H. An Experimental Study of MAF-SRF-PLL with Comb Compensator. In Proceedings of the IEEE Applied Power Electronics Conference and Exposition (APEC), Tampa, FL, USA, 26–30 March 2017; pp. 1310–1313. [Google Scholar] [CrossRef]
- Cabezas, J.J.; Gonzalez-Medina, R.; Figueres, E.; Garcera, G. Comparison and Combination of Digital Controls for Single-Phase Boost PFC Converters in Avionic Power Systems. In Proceedings of the IEEE International Symposium on Industrial Electronics (ISIE), Edinburgh, UK, 19–21 June 2017; pp. 645–650. [Google Scholar] [CrossRef]
- Rudnicki, T.; Czerwinski, R.; Polok, D. Performance Analysis of a PMSM Drive with Torque and Speed Control. In Proceedings of the International Conference Mixed Design of Integrated Circuits and Systems (MIXDES), Torun, Poland, 25–27 June 2015; pp. 562–566. [Google Scholar] [CrossRef]
- Low, K.S.; Rahman, M.F.; Lim, K.W. The dq-Transformation and Feedback Linearization of a Permanent Magnet Synchronous Motor. In Proceedings of the IEEE International Conference on Power Electronics and Drive Systems (PEDS), Singapore, 21–24 February 1995; pp. 292–296. [Google Scholar] [CrossRef]
- Hu, W.; Chen, C.; Duan, S.; Wan, W.; Song, L.; Zhu, J. Decoupled Average Current Balancing Method for Interleaved Buck Converters with Dual Closed-Loop Control. In Proceedings of the IEEE International Power Electronics and Motion Control Conference (ECCE-Asia), Nanjing, China, 29 November–2 December 2020; pp. 578–583. [Google Scholar] [CrossRef]
- Duan, S.; Zhou, L.; Wang, J. Flux Weakening Mechanism of Interior Permanent Magnet Synchronous Machines with Segmented Permanent Magnets. IEEE Trans. Appl. Supercond. 2014, 24, 0500105. [Google Scholar] [CrossRef]
- Hava, A.M.; Kerkman, R.J.; Lipo, T.A. A High-Performance Generalized Discontinuous PWM Algorithm. IEEE Trans. Ind. Appl. 1998, 34, 1059–1071. [Google Scholar] [CrossRef] [Green Version]
- Anirudh-Acharya, B.; John, V. Design of Output dv/dt Filter for Motor Drives. In Proceedings of the International Conference on Industrial and Information Systems (ICIIS), Mangalore, India, 29 July–1 August 2010; pp. 562–567. [Google Scholar] [CrossRef]
- Guacci, M.; Azurza-Anderson, J.; Pally, K.L.; Bortis, D.; Kolar, J.W.; Kasper, M.; Sanchez, J.; Deboy, G. Experimental Characterization of Silicon and Gallium Nitride 200 V Power Semiconductors for Modular/Multi-Level Converters using Advanced Measurement Techniques. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 8, 2238–2254. [Google Scholar] [CrossRef]
- Zhang, L.; Yuan, X.; Wu, X.; Shi, C.; Zhang, J.; Zhang, Y. Performance Evaluation of High-Power SiC MOSFET Modules in Comparison to Si IGBT Modules. IEEE Trans. Power Electron. 2019, 34, 1181–1196. [Google Scholar] [CrossRef]
- Haider, M.; Fuchs, S.; Zulauf, G.; Bortis, D.; Kolar, J.W. Analytical Loss Model for Three-Phase 1200 V SiC MOSFET Inverter Drive System Utilizing Miller Capacitor-Based dv/dt-Limitation. IEEE Open J. Power Electron. 2021. accepted for publication. [Google Scholar]
- Yin, S.; Tseng, K.J.; Tong, C.F.; Simanjorang, R.; Gajanayake, C.J.; Gupta, A.K. A 99% Efficiency SiC Three-Phase Inverter using Synchronous Rectification. In Proceedings of the IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA, 20–24 March 2016; pp. 2942–2949. [Google Scholar] [CrossRef]
- Agarwal, A.; Fatima, H.; Haney, S.; Ryu, S.H. A New Degradation Mechanism in High-Voltage SiC Power MOSFETs. IEEE Electron Device Lett. 2007, 28, 587–589. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, J.; Chen, J.; Li, Z.; Zhai, D.; Yang, X.; Ji, B.; Shen, Z.J. Investigation on Degradation of SiC MOSFET under Surge Current Stress of Body Diode. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 8, 77–89. [Google Scholar] [CrossRef]
- Datasheet for SIMOTICS S-1FT7. Datasheet, 1FT7084-5SF75-1MG1. Available online: https://mall.industry.siemens.com/mall/de/de/Catalog/Product/1FT7084-5SF75-1MG1 (accessed on 7 October 2021).
- Tong, W.; Dai, S.; Wu, S.; Tang, R. Performance Comparison between an Amorphous Metal PMSM and a Silicon Steel PMSM. IEEE Trans. Magn. 2019, 55, 8102705. [Google Scholar] [CrossRef]
- Nakagawa, A.; Yamaguchi, Y.; Ogura, T.; Watanabe, K.; Yasuhara, Y.; Sato, R.; Endo, K.; Furukawa, K. 500 V Three-Phase Inverter ICs Based on a New Dielectric Isolation Technique. In Proceedings of the International Symposium on Power Semiconductor Devices and ICs, Tokyo, Japan, 19–21 May 1992; pp. 328–332. [Google Scholar]
- Kolar, J.W.; Krismer, F.; Lobsiger, Y.; Mühlethaler, J.; Nussbaumer, T.; Miniböck, J. Extreme Efficiency Power Electronics. In Proceedings of the International Conference on Integrated Power Electronics Systems (CIPS), Nuremberg, Germany, 6–8 March 2012; pp. 1–22. [Google Scholar]
- Wang, P.; Montanari, G.C.; Cavallini, A. Partial Discharge Phenomenology and Induced Aging Behavior in Rotating Machines Controlled by Power Electronics. IEEE Trans. Ind. Electron. 2014, 61, 7105–7112. [Google Scholar] [CrossRef]
- C3M0016120K Silicon Carbide Power MOSFET. Datasheet. Available online: https://assets.wolfspeed.com/uploads/2020/12/C3M0016120K.pdf (accessed on 7 October 2021).
- C3M0032120K Silicon Carbide Power MOSFET. Datasheet. Available online: https://assets.wolfspeed.com/uploads/2020/12/C3M0032120K.pdf (accessed on 7 October 2021).
- 1EDI EiceDRIVER Compact, Output with Clamp Variant for IGBT. Datasheet. Available online: https://www.infineon.com/dgdl/Infineon-1EDIX0I12MF-DS-v02_00-EN.pdf?fileId=5546d46145f1f3a401462944e0190fd7 (accessed on 7 October 2021).
- Vujacic, M.; Hammami, M.; Srndovic, M.; Grandi, G. Analysis of DC-Link Voltage Switching Ripple in Three-Phase PWM Inverters. Energies 2018, 11, 471. [Google Scholar] [CrossRef] [Green Version]
- Metallized Polypropylene Film Capacitors (MKP): B32776. Datasheet. Available online: hhttps://www.tdk-electronics.tdk.com/inf/20/20/db/fc_2009/MKP_B32774_778.pdf (accessed on 7 October 2021).
- Kolar, J.W.; Biela, J.; Minibock, J. Exploring the Pareto Front of Multi-Objective Single-Phase PFC Rectifier Design Optimization—99.2% Efficiency vs. 7 kW/in3 Power Density. In Proceedings of the IEEE International Power Electronics and Motion Control Conference (IPEMC), Wuhan, China, 17–20 May 2009; pp. 1–21. [Google Scholar] [CrossRef]
- Neumayr, D.; Bortis, D.; Kolar, J.W. The Essence of the Little Box Challenge-Part A: Key Design Challenges and Solutions. CPSS Trans. Power Electron. Appl. 2020, 5, 158–179. [Google Scholar] [CrossRef]
- Papamanolis, P.; Guillod, T.; Krismer, F.; Kolar, J.W. Minimum Loss Operation and Optimal Design of High-Frequency Inductors for Defined Core and Litz Wire. IEEE Open J. Power Electron. 2020, 1, 469–487. [Google Scholar] [CrossRef]
- Kool Mμ E-Core 00K4317E040. Datasheet. Available online: https://www.mag-inc.com/Media/Magnetics/Datasheets/00K4317E040.pdf (accessed on 22 November 2021).
- Papamanolis, P.; Bortis, D.; Krismer, F.; Menzi, D.; Kolar, J.W. New EV Battery Charger PFC Rectifier Front-End Allowing Full Power Delivery in 3-Phase and 1-Phase Operation. Electronics 2021, 10, 69. [Google Scholar] [CrossRef]
- Martis, R.; Siecoban, R.; Martis, C.; Szabo, L. Common and Normal Mode Currents in PMSM PWM Drives. In Proceedings of the International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Capri, Italy, 22–24 June 2016; pp. 500–504. [Google Scholar] [CrossRef]
- EMC Products Based on Nanocrystalline Vitroperm. Datasheet. Available online: https://www.vacuumschmelze.com/03_Documents/Brochures/EMC%20Nanocrystalline%20VITROPERM.pdf (accessed on 18 November 2021).
- De Maglie, R.; Engler, A. Radiation Prediction of Power Electronics Drive System for Electromagnetic Compatibility in Aerospace Applications. In Proceedings of the European Conference on Power Electronics and Applications (EPE-ECCE), Birmingham, UK, 30 August–1 September 2011; pp. 1–9. [Google Scholar]
- Chowdhury, S.; Gurpinar, E.; Su, G.J.; Raminosoa, T.; Burress, T.A.; Ozpineci, B. Enabling Technologies for Compact Integrated Electric Drives for Automotive Traction Applications. In Proceedings of the Transportation Electrification Conference and Expo (ITEC), Detroit, MI, USA, 19–21 June 2019; pp. 1–8. [Google Scholar] [CrossRef]
- TM 300 Series In-Line Torque Transducers. Manual. TM 310. Available online: https://www.magtrol.com/wp-content/uploads/tm300manual.pdf (accessed on 7 October 2021).
- CISPR 16-2-1; Specification for Radio Disturbance and Immunity Measuring Apparatus and Methods— Part 3-2. Unpublished work. 2007.
- Frugier, D.; Ladoux, P. Voltage Disturbances on 25 kV–50 Hz Railway Lines—Modelling Method and Analysis. In Proceedings of the International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Pisa, Italy, 14–16 June 2010; pp. 1080–1085. [Google Scholar] [CrossRef]
- Chomat, M.; Schreier, L.; Bendl, J. Active Front-End of Electric Drive under Unbalanced Voltage Supply. In Proceedings of the International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Pisa, Italy, 14–16 June 2010; pp. 227–232. [Google Scholar] [CrossRef]
- Baumann, M.; Kolar, J.W. A Novel Control Concept for Reliable Operation of a Three-Phase Three-Switch Buck-Type Unity-Power-Factor Rectifier with Integrated Boost Output Stage under Heavily Unbalanced Mains Condition. IEEE Trans. Ind. Electron. 2005, 52, 399–409. [Google Scholar] [CrossRef]
- Gao, S.; Barnes, M. Phase-Locked Loop for AC Systems: Analyses and Comparisons. In Proceedings of the IET International Conference on Power Electronics, Machines and Drives (PEMD), Bristol, UK, 27–29 March 2012; pp. 1–6. [Google Scholar] [CrossRef] [Green Version]
- Ciobotaru, M.; Teodorescu, R.; Blaabjerg, F. A New Single-Phase PLL Structure Based on Second Order Generalized Integrator. In Proceedings of the IEEE Power Electronics Specialists Conference (PESC), Jeju, Korea, 18–22 June 2006; pp. 1–6. [Google Scholar] [CrossRef]
- Wymann, T.; Pieder, J. Power Loss Ride-Through in a Variable Speed Drive System. In Proceedings of the IEEE Petroleum and Chemical Industry Conference Europe, Amsterdam, The Netherlands, 3–5 June 2014; pp. 1–9. [Google Scholar] [CrossRef]
- Piya, P.; Ebrahimi, M.; Karimi-Ghartemani, M.; Khajehoddin, S.A. Fault Ride-Through Capability of Voltage-Controlled Inverters. IEEE Trans. Ind. Electron. 2018, 65, 7933–7943. [Google Scholar] [CrossRef]
- Van Zyl, A.; Spee, R.; Faveluke, A.; Bhowmik, S. Voltage Sag Ride-Through for Adjustable-Speed Drives with Active Rectifiers. IEEE Trans. Ind. Appl. 1998, 34, 1270–1277. [Google Scholar] [CrossRef]
- EN 50155; Railway Applications—Electronic Equipment used on Rolling Stock. 2007; Unpublished work.
- Pandit, J.K.; Sakthisudhursun, B.; Aware, M.V. PR Controller Implementation using Double Update Mode Digital PWM for Grid Connected Inverter. In Proceedings of the International Conference on Power Electronics, Drives and Energy Systems (PEDES), Mumbai, India, 16–19 December 2014; pp. 1–6. [Google Scholar] [CrossRef]
- Van de Sype, D.M.; De Gusseme, K.; Van den Bossche, A.P.; Melkebeek, J.A. Small-Signal Laplace-Domain Analysis of Uniformly-Sampled Pulse-Width Modulators. In Proceedings of the IEEE Power Electronics Specialists Conference (PESC), Aachen, Germany, 20–25 June 2004; pp. 4292–4298. [Google Scholar] [CrossRef] [Green Version]
- Forbes, J.; Ordonez, M.; Anun, M. Improving the Dynamic Response of Power Factor Correctors Using Simple Digital Filters: Moving Average Filter Comparative Evaluation. In Proceedings of the IEEE Energy Conversion Congress and Exposition (ECCE), Denver, CO, USA, 15–19 September 2013; pp. 4814–4819. [Google Scholar] [CrossRef]
- Briz, F.; Díaz-Reigosa, D.; Degner, M.W.; García, P.; Guerrero, J.M. Current Sampling and Measurement in PWM Operated AC Drives and Power Converters. In Proceedings of the IEEE International Power Electronics and Motion Control Conference (ECCE-Asia), Sapporo, Japan, 21–24 June 2010; pp. 2753–2760. [Google Scholar] [CrossRef]
- Rohner, G.; Mirić, S.; Bortis, D.; Kolar, J.W.; Schweizer, M. Comparative Evaluation of Overload Capability and Rated Power Efficiency of 200 V Si/GaN 7-Level FC 3-Φ Variable Speed Drive Inverter Systems. In Proceedings of the IEEE Applied Power Electronics Conference and Exposition (APEC), Phoenix, AZ, USA, 14–17 June 2021; pp. 2177–2186. [Google Scholar] [CrossRef]
Nominal Speed () | 3700 rpm |
Nominal Mech. Power, Grid () | kW |
Nominal Grid Voltage () | 400 Vrms |
Grid Frequency () | 50 Hz |
DC-Link Voltage () | 650 Vdc |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haider, M.; Bortis, D.; Zulauf, G.; Kolar, J.W.; Ono, Y. Novel Motor-Kinetic-Energy-Based Power Pulsation Buffer Concept for Single-Phase-Input Electrolytic-Capacitor-Less Motor-Integrated Inverter System. Electronics 2022, 11, 280. https://doi.org/10.3390/electronics11020280
Haider M, Bortis D, Zulauf G, Kolar JW, Ono Y. Novel Motor-Kinetic-Energy-Based Power Pulsation Buffer Concept for Single-Phase-Input Electrolytic-Capacitor-Less Motor-Integrated Inverter System. Electronics. 2022; 11(2):280. https://doi.org/10.3390/electronics11020280
Chicago/Turabian StyleHaider, Michael, Dominik Bortis, Grayson Zulauf, Johann W. Kolar, and Yasuo Ono. 2022. "Novel Motor-Kinetic-Energy-Based Power Pulsation Buffer Concept for Single-Phase-Input Electrolytic-Capacitor-Less Motor-Integrated Inverter System" Electronics 11, no. 2: 280. https://doi.org/10.3390/electronics11020280
APA StyleHaider, M., Bortis, D., Zulauf, G., Kolar, J. W., & Ono, Y. (2022). Novel Motor-Kinetic-Energy-Based Power Pulsation Buffer Concept for Single-Phase-Input Electrolytic-Capacitor-Less Motor-Integrated Inverter System. Electronics, 11(2), 280. https://doi.org/10.3390/electronics11020280