A New Sparse Optimal Array Design Based on Extended Nested Model for High-Resolution DOA Estimation
Abstract
:1. Introduction
2. Base Component
2.1. Signal Model with DCA
2.2. Nested-like Array Configurations
3. New Strategy
- (a)
- If the DCA virtual element , there are three situations as follows:
- (1)
- If , is the self-difference element, it is easy to see that ;
- (2)
- If , then we can rewrite as:
- (3)
- If , then we can rewrite as:Therefore, in this part , can be found in DCA, and the lag in DCA is hole-free.
- (b)
- If the DCA virtual element , let , , . When , we can rewrite asThen,
- (1)
- If , then we can let become:
- (2)
- If , then we rewrite the form of asObviously, it is the difference element between the right and middle subarrays.
- (3)
- If , then should be rewritten toIt is also the difference element between the right and middle subarrays.
When , can be as:Then,- (4)
- If according to condition (3), we have can be as
- (5)
- If then can be asIt is the difference element between the right and middle subarrays.
- (6)
- If then can be rewritten as:
Therefore, in this lag , can be found in DCA, and the lag in DCA is hole-free. - (c)
- If the DCA virtual element , then can be as , where . According to condition (4), we have In this way, can be as
4. Proposed Array Configuration and Properties
4.1. Proposed New Configuration
- (a)
- Therefore, The first condition of Theorem 1 is perfect coincidence
- (b)
- On the second condition of Theorem 1, we haveTherefore, we conclude that
- (c)
- where ; As a result, it can be deduced that conditions (3) and (4) can be satisfied.
4.2. DOF Ratio and Comparison
5. Numerical Experiment
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, W.; He, Z.S. Comments on “waveform optimization for transmit beamforming with mimo radar antenna array”. IEEE Trans. Antennas Propag. 2018, 66, 6463. [Google Scholar] [CrossRef]
- Herd, J.S.; Conway, M. The evolution to modern phased array architectures. Proc. IEEE 2016, 104, 519–529. [Google Scholar] [CrossRef]
- Ganti, A. Calibration and direction of arrival performance of sonar arrays composed of multiple sub-arrays. In Proceedings of the MTS/IEEE Charleston OCEANS Conference, Charleston, SC, USA, 22–25 October 2018. [Google Scholar]
- Huang, W.; Huang, Y.; Zeng, Y.; Yang, L. Wideband millimeter wave communication with lens antenna array: Joint beamforming and antenna selection with group sparse optimization. IEEE Trans. Wireless Commun. 2018, 10, 6575–6589. [Google Scholar] [CrossRef]
- Albrektsen, S.M.; Bryne, T.H.; Johansen, T.A. Phased array radio system aided inertial navigation for unmanned aerial vehicles. In Proceedings of the 2018 IEEE Aerospace Conference, Big Sky, MT, USA, 3–10 March 2018. [Google Scholar]
- Guo, Q.; Deng, W.H.; Bebek, O.; Cavusoglu, M.C.; Mastrangelo, C.H.; Young, D.J. Personal inertial navigation system assisted by mems ground reaction sensor array and interface asic for gps-denied environment. IEEE J. Solid-State Circuits 2018, 53, 3039–3049. [Google Scholar] [CrossRef]
- Dimitrov, K.; Dzhedzhev, K.; Mitsev, T. Enhancing smart-home environments using infrared arrays. In Proceedings of the National Conference with International Participation, Sofia, Bulgaria, 17–18 May 2018. [Google Scholar]
- Liang, Q.; Mpanda, R.S.; Xin, W.; Shi, J.; Xu, L. A printed dipole array antenna for non-contact monitoring system. In Proceedings of the 2018 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC), Xuzhou, China, 21–24 July 2018. [Google Scholar]
- Schafer, S.; Diewald, A.R.; Schmiech, D.; Muller, S. One-dimensional patch array for microwave-based vital sign monitoring of elderly people. In Proceedings of the 2018 19th International Radar Symposium (IRS), Bonn, Germany, 20–22 June 2018. [Google Scholar]
- Liu, J.; Zhang, Y.; Wang, W.; Lu, Y. Generalized design method for the difference co-array of the sum co-array. In Proceedings of the IEEE International Conference on Digital Signal Processing, Beijing, China, 16–18 October 2016. [Google Scholar]
- Pillai, S.U.; Haber, F. Statistical analysis of a high resolution spatial spectrum estimator utilizing an augmented covariance matrix. IEEE Trans. Acoust. Speech Signal Process. 1987, 35, 1517–1523. [Google Scholar] [CrossRef]
- Ma, W.K.; Hsieh, T.H.; Chi, C.Y. Doa estimation of quasi-stationary signals via khatri-rao subspace. In Proceedings of the IEEE International Conference on Acoustics, Taipei, Taiwan, 19–24 April 2009. [Google Scholar]
- Ma, W.K.; Hsieh, T.H.; Chi, C.Y. Doa estimation of quasi-stationary signals with less sensors than sources and unknown spatial noise covariance: A khatri–rao subspace approach. IEEE Trans. Signal Process. 2010, 58, 2168–2180. [Google Scholar] [CrossRef]
- Pillai, S.U.; Bar-Ness, Y.; Haber, F. A new approach to array geometry for improved spatial spectrum estimation. Proc. IEEE 1985, 73, 1522–1524. [Google Scholar] [CrossRef]
- Chevalier, P.; Ferreol, A. On the virtual array concept for the fourth-order direction finding problem. IEEE Trans. Signal Process. 1999, 47, 2592–2595. [Google Scholar] [CrossRef]
- Abramovich, I.Y.; Gray, A.D.; Gorokhov, Y.A.; Spencer, K.N. Positive-definite toeplitz completion in doa estimation for nonuniform linear antenna arrays. i. fully augmentable arrays. IEEE Trans. Signal Process. 1998, 46, 2458–2471. [Google Scholar] [CrossRef] [Green Version]
- Krim, H. Two decades of array signal processing research. IEEE Signal Process. Mag. 1994, 13, 67–94. [Google Scholar] [CrossRef]
- Schmidt, R. Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 1986, 34, 276–280. [Google Scholar] [CrossRef] [Green Version]
- Roy, R.; Paulraj, A.; Kailath, T. Esprit—A subspace rotation approach to estimation of parameters of cisoids in noise. IEEE Trans. Acoust. Speech Signal Process. 1986, 34, 1340–1342. [Google Scholar] [CrossRef]
- Kailath, T. Esprit–estimation of signal parameters via rotational invariance techniques. Opt. Eng. 1990, 29, 296. [Google Scholar] [CrossRef]
- Cardoso, J.-F.; Moulines, E. Asymptotic performance analysis of direction-finding algorithms based on fourth-order cumulants. IEEE Trans. Signal Process. 1995, 43, 214–224. [Google Scholar] [CrossRef] [Green Version]
- Nikias, L.C.; Mendel, M.J. Signal processing with higher-order spectra. Signal Process. Mag. IEEE 1993, 10, 10–37. [Google Scholar] [CrossRef]
- Abramovich, Y.I.; Gray, D.A.; Gorokhov, A.Y.; Spencer, N.K. Comparison of doa estimation performance for various types of sparse antenna array geometries. In Proceedings of the 8th European Signal Processing Conference (EUSIPCO 1996), Trieste, Italy, 10–13 September 1996. [Google Scholar]
- Vertatschitsch, E.; Haykin, S. Nonredundant arrays. Proc. IEEE 1986, 74, 217. [Google Scholar] [CrossRef]
- Vaidyanathan, P.P.; Pal, P. Sparse sensing with co-prime samplers and arrays. IEEE Trans. Signal Process. 2011, 59, 573–586. [Google Scholar] [CrossRef]
- Pal, P.; Vaidyanathan, P.P. Multiple level nested array: An efficient geometry for 2qth order cumulant based array processing. IEEE Trans. Signal Process. 2012, 60, 1253–1269. [Google Scholar] [CrossRef]
- Iizuka, Y.; Ichige, K. Optimum linear array geometry with minimum redundancy for 2q-th order cumulant-based array processing. In Proceedings of the International Workshop on Compressed Sensing Theory and Its Applications to Radar, Aachen, Germany, 19–22 September 2016. [Google Scholar]
- Mendel, M.J. Tutorial on higher-order statistics (spectra) in signal processing and system theory: Theoretical results and some applications. IEEE Proc. 1991, 79, 278–305. [Google Scholar] [CrossRef]
- Moffet, A. Minimum-redundancy linear arrays. IEEE Trans. Antennas Propag. 1968, 16, 172–175. [Google Scholar] [CrossRef]
- Pal, P.; Vaidyanathan, P.P. Nested arrays: A novel approach to array processing with enhanced degrees of freedom. IEEE Trans. Signal Process. 2010, 58, 4167–4181. [Google Scholar] [CrossRef] [Green Version]
- Pillai, S.U.; Kwon, B.H. Forward/backward spatial smoothing techniques for coherent signal identification. IEEE Trans. Acoust. Speech Signal Process. 1989, 37, 8–15. [Google Scholar] [CrossRef] [Green Version]
- Peng, Z.; Ding, Y.; Ren, S.; Wu, H.; Wang, W. Coprime nested arrays for doa estimation: Exploiting the nesting property of coprime array. IEEE Signal Process. Lett. 2022, 29, 444–448. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Y.; Lu, Y.; Ren, S.; Cao, S. Augmented nested arrays with enhanced dof and reduced mutual coupling. IEEE Trans. Signal Process. 2017, 65, 5549–5563. [Google Scholar] [CrossRef]
- Yang, M.; Sun, L.; Yuan, X.; Chen, B. Improved nested array with hole-free dca and more degrees of freedom. Electron. Lett. 2016, 52, 2068–2070. [Google Scholar] [CrossRef]
- Zheng, Z.; Wang, W.-Q.; Kong, Y.; Zhang, Y.D. Misc array: A new sparse array design achieving increased degrees of freedom and reduced mutual coupling effect. IEEE Trans. Signal Process. 2019, 67, 1728–1741. [Google Scholar] [CrossRef]
- Ren, S.; Dong, W.; Li, X.; Wang, W.; Li, X. Extended nested arrays for consecutive virtual aperture enhancement. IEEE Signal Process. 2020, 27, 575–579. [Google Scholar] [CrossRef]
- Liu, C.-L.; Vaidyanathan, P.P. Remarks on the spatial smoothing step in coarray music. IEEE Signal Process. Lett. 2015, 22, 1438–1442. [Google Scholar] [CrossRef]
- Stoica, P.; Nehorai, A. Music, maximum likelihood and cramer-rao bound: Further results and comparisons. IEEE Trans. Acoust. Speech Signal Process. 1989, 38, 2605–2608. [Google Scholar]
Optimal N | Maximum-DOF | |
---|---|---|
Values |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Ren, S.; Li, X.; Wang, G.; Wang, W. A New Sparse Optimal Array Design Based on Extended Nested Model for High-Resolution DOA Estimation. Electronics 2022, 11, 3334. https://doi.org/10.3390/electronics11203334
Wang S, Ren S, Li X, Wang G, Wang W. A New Sparse Optimal Array Design Based on Extended Nested Model for High-Resolution DOA Estimation. Electronics. 2022; 11(20):3334. https://doi.org/10.3390/electronics11203334
Chicago/Turabian StyleWang, Shujian, Shiwei Ren, Xiangnan Li, Guiyu Wang, and Weijiang Wang. 2022. "A New Sparse Optimal Array Design Based on Extended Nested Model for High-Resolution DOA Estimation" Electronics 11, no. 20: 3334. https://doi.org/10.3390/electronics11203334
APA StyleWang, S., Ren, S., Li, X., Wang, G., & Wang, W. (2022). A New Sparse Optimal Array Design Based on Extended Nested Model for High-Resolution DOA Estimation. Electronics, 11(20), 3334. https://doi.org/10.3390/electronics11203334