Improvement of the SPICE Model of Diode Based on Measurement and Nonlinear Fitting Random Optimization Algorithm
Abstract
:1. Introduction
2. Analysis of the Mechanism of Diode Electromagnetic Interference
3. Establishing a Diode EMC Model
3.1. Modeling Process
3.2. Nonlinear Fitting Stochastic Optimization Algorithm
3.3. The Measurement of Diode
3.4. Establishment of Diode Electromagnetic Compatibility SPICE Model
4. Model Simulation and Verification
4.1. Design of Model Verification Platform
4.2. Comparison with Simulation
5. Conclusions
- (1)
- This paper only considers the temperature effect of reverse current and reverse breakdown voltage; in fact, the diode is thermally sensitive as a semiconductor device, and its forward current and forward conduction voltage will also be affected by temperature. Therefore, to more accurately consider the temperature characteristics of the diode, it is necessary to consider that the analog forward characteristics are affected by temperature.
- (2)
- The influence of reverse recovery time is considered in the modeling of this paper, but with the advent of the 5G era, positive guidance may also interfere with high-frequency signals, which is worth studying in the electromagnetic simulation calculation of high-speed electronic systems.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ramdani, M.; Sicard, E.; Boyer, A.; Dhia, S.B.; Whalen, J.J.; Hubing, T.H.; Wada, O.; Coenen, M. The Electromagnetic compatibility of Integrated Circuits-Past, Present, and Future. IEEE Trans. Electromagn. Compat. 2009, 51, 78–100. [Google Scholar] [CrossRef]
- Chew, W.C. Marriage of Computational Electromagnetics and Electromagnetic Compatibility. In Proceedings of the 2018 Joint IEEE EMC and APEMC symposium, Singapore, 14–17 May 2018. [Google Scholar]
- Chew, W.C. Maxwell’s Equations and Modern Electromagnetics after 150 Years and Role of Electromagnetics in EMC. In Proceedings of the IEEE APEMC Conference, Shenzhen, China, 18–21 May 2016. [Google Scholar]
- Leila, F.; Anis, A. New simplified model for predicting conducted EMI in DC/DC converters. Electr. Eng. 2017, 99, 1087–1097. [Google Scholar]
- Kurt, M.C.; Arnold, J.R.; Pieter, G.W. The Measurement and SPICE Modelling of Schottky Barrier Diodes Appropriate for Use as Bypass Diodes within Photovoltaic Modules. Energies 2022, 15, 4783. [Google Scholar] [CrossRef]
- Ge, K.; Liping, J. Analog and Digital Circuits, 3rd ed.; Publishing House of Electronics Industry: Beijing, China, 2015; pp. 8–20. [Google Scholar]
- Antognetti, P.; Giuseppe, M. Semiconductor Device Modeling with SPICE; McGraw Hill: New York, NY, USA, 1988; pp. 11–40. [Google Scholar]
- Deveney, M. A temperature dependent SPICE macro-model for Zener and avalanche diodes. In Proceedings of the 34th Midwest Symposium on Circuits and Systems, Monterey, CA, USA, 14–17 May 1991; pp. 15–26. [Google Scholar]
- Bley, M.; Filho, M.; Raizer, A. Modeling transient discharge suppressors. IEEE Potentials 2004, 23, 43–45. [Google Scholar]
- Lepkowski, J.; Lepkowski, W. Evaluating TVS Protection Circuits with SPICE. Power Electron. Technol. 2006, 32, 44–49. [Google Scholar]
- Piotrowski, R. An improved Spice2 Zener diode model for soft-region simulation capability. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 1988, 7, 1301–1303. [Google Scholar] [CrossRef]
- Zhang, D.; Brown, R.; Growden, A.; Berger, P.R.; Droopad, R. A Nonlinear Circuit Simulation of Switching Process in Resonant-Tunneling Diodes. IEEE Trans. Electron Devices 2016, 63, 4993–4997. [Google Scholar] [CrossRef]
- Tohlu, M.; Aoki, M.; Takashi, H.; Wada, O. Equivalent circuit model with nonlinear characteristics of Zener diode extracted from SPICE model for ESD simulation. In Proceedings of the International Workshop on the Electromagnetic Compatibility of Integrated Circuits, St. Petersburg, Russia, 4–8 July 2017; pp. 61–65. [Google Scholar]
- Gan, Z. Simplified Zener Diode DC Spice Model. U.S. Patent 20160203250 A1, 14 July 2016. [Google Scholar]
- Hitchcock, C.W.; Zhou, X.; Pande, G.; Ghandi, R.; Bolotnikov, A.; Chow, T.P. A Subcircuit SPICE Model for SiC Charge-Balance Schottky Diodes. Mater. Sci. Forum 2020, 1004, 945–952. [Google Scholar]
- Yunyeong, C.; Miryeon, K.; Jisun, P.; Shin, H. Analysis of Organic Light-Emitting Diode SPICE Models with Constant or Voltage-Dependent Components. J. Nanosci. Nanotechnol. 2020, 20, 4773–4777. [Google Scholar]
- Tao, L.; Le, X.; Yao, H.; Wu, H.; Yang, Y.; Wu, N.; Wei, F.; Shi, X.; Yang, X. A Novel Simulation Method for Analyzing Diode Electrical Characteristics Based on Neural Networks. Electronics 2021, 10, 2337. [Google Scholar] [CrossRef]
- Yingjie, J.; Fei, X.; Yaoqing, D.; Yifei, L. Field-circuit Coupling Modeling and Multi-rate Electro-thermal co-simulation Analysis of Merged PiN Schottky SiC Diode. Proc. CSEE 2019, 39, 5585–5594. [Google Scholar]
- Qiang, L.; Haijing, Z.; Fukai, X.; Zhenguo, Z. Research on Electromagnetic Interference of Switch Power Supply Based on PIN Diode Model. J. Microw. 2014, S2, 29–32. [Google Scholar]
- Chengkai, W. Research on Terahertz Frequency-Multiplied Technology Based on Schottky Diodes. Master’s Thesis, University of Electronic Science and Technology of China, Chengdu, China, 2018; pp. 14–24. [Google Scholar]
- Xingbi, C.; Yong, C. Microelectronic Devices, 3rd ed.; Publishing House of Electronics Industry: Beijing, China, 2018; pp. 70–74. [Google Scholar]
- Enke, L.; Binsheng, Z.; Jinsheng, L. Semiconductor Physics, 7th ed.; Publishing House of Electronics Industry: Xi’an, China, 2008; pp. 181–185. [Google Scholar]
- IEEE Std. 1597.1-2008; IEEE Standard for Validation of Computational Electromagnetics Computer Modeling and Simulations. IEEE: New York, NY, USA, 2008; pp. 1–41.
- IEEE Std. 1597.2-2010; IEEE Recommended Practice for Validation of Computational Electromagnetics Computer Modeling and Simulations. IEEE: New York, NY, USA, 2011; pp. 1–124.
- Alistair, D.; Gang, Z.; Slawomir, K.; Wang, L. Objective Selection of Minimum Acceptable Mesh Refinement for EMC Simulations. IEEE Trans. Electromagn. Compat. 2015, 57, 1266–1269. [Google Scholar]
- Alistair, D.; Gang, Z.; Slawomir, K.; Orlandi, A.; Di Febo, D.; Wang, L.; Sasse, H. Comparison of Data with Multiple Degrees of Freedom Utilizing the Feature Selective Validation Method. IEEE Trans. Electromagn. Compat. 2016, 58, 784–791. [Google Scholar]
Number | Model Parameters | Default Value | Typical Value | Unit |
---|---|---|---|---|
1 | Reverse saturation current | 1 × 10−14 | 1 × 10−14 | A |
2 | Emission coefficient | 1 | - | - |
3 | Series resistance | 0 | 10 | Ω |
4 | reverse breakdown voltage | ∞ | 50 | V |
5 | reverse breakdown current | 1 × 10−10 | - | A |
6 | Zero Bias Junction Capacitance | 0 | 2 pF | F |
7 | gradient coefficient | 0.5 | 0.5 | - |
8 | Built-in potential | 1 | 0.6 | V |
9 | transit time | 0 | 0.1 ns | s |
10 | flicker noise index | 1 | - | - |
11 | flicker noise figure | 0 | - | - |
12 | Band gap | 1.11 | 1.11 | eV |
13 | Forward Biased Barrier Capacitance | 0.5 | 0.5 | - |
14 | Reverse saturation current temperature index | 3 | 3 | - |
Number | Optimization Parameters | Value | Unit |
---|---|---|---|
1 | Maximum number of cycles | 10,000 | time |
2 | Reverse saturation current | 4.377251 × 10−6 | A |
3 | Emission coefficient | 3.087715 | - |
4 | The sum of squares of the residuals of the optimal accuracy | 6.302667 × 10−5 | A2 |
5 | The absolute value of the maximum residual | 1.468315 × 10−3 | A |
6 | The maximum residuals correspond to the voltage value | 0.6585 | V |
7 | The absolute value of the minimum residual | 2.189795 × 10−6 | A |
8 | The minimum residuals correspond to the voltage value | 0.534 | V |
Number | Optimization Parameters | Value | Unit |
---|---|---|---|
1 | Maximum number of cycles | 10,000 | time |
2 | zero bias junction capacitance | 5.150461 × 10−11 | pF |
3 | built-in potential | 0.319813 | V |
4 | gradient coefficient | 0.315106 | - |
5 | The sum of squares of the residuals of the optimal accuracy | 2.049740 × 10−26 | pF2 |
6 | The absolute value of the maximum residual | 7.765136 × 10−14 | pF |
7 | The maximum residuals correspond to the voltage value | 1.6 | V |
8 | The absolute value of the minimum residual | 5.582152 × 10−16 | pF |
9 | The minimum residuals correspond to the voltage value | 20.8 | V |
Number | Model Parameters | Value | Unit |
---|---|---|---|
1 | reverse saturation current | 4.377 × 10−6 | A |
2 | emission coefficient | 3.088 | - |
3 | series resistance | 90 | Ω |
4 | reverse breakdown voltage | 200 | V |
5 | reverse breakdown current | 1 × 10−5 | A |
6 | zero Bias Junction Capacitance | 5.150 × 10−11 | F |
7 | gradient coefficient | 0.315 | - |
8 | built-in potential | 0.320 | V |
9 | transit time | 9.517 × 10−7 | s |
10 | flicker noise index | 1 | - |
11 | flicker noise figure | 0 | - |
12 | band gap | 1.11 | eV |
13 | forward Biased Barrier Capacitance | 0.5 | - |
14 | reverse saturation current temperature index | 3 | - |
Waveform | FSV | |||
---|---|---|---|---|
ADM | FDM | GDM | ||
Time domain | 10 kHz | 0.1137/very good | 0.197/very good | 0.2415/good |
100 kHz | 0.1213/very good | 0.1808/very good | 0.233/good | |
1 MHz | 0.2776/good | 0.4365/fail | 0.5552/fail | |
Frequency domain | 10 kHz | 0.06636/excellent | 0.03406/excellent | 0.07973/excellent |
100 kHz | 0.1121/very good | 0.1368/very good | 0.197/very good | |
1 MHz | 0.1118/very good | 0.1463/very good | 0.1974/very good |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, D.; Xu, G.; Li, J.-Q.; Pan, Z.-Y.; Zhao, X.; Du, P.-A. Improvement of the SPICE Model of Diode Based on Measurement and Nonlinear Fitting Random Optimization Algorithm. Electronics 2022, 11, 3461. https://doi.org/10.3390/electronics11213461
Ren D, Xu G, Li J-Q, Pan Z-Y, Zhao X, Du P-A. Improvement of the SPICE Model of Diode Based on Measurement and Nonlinear Fitting Random Optimization Algorithm. Electronics. 2022; 11(21):3461. https://doi.org/10.3390/electronics11213461
Chicago/Turabian StyleRen, Dan, Gang Xu, Jing-Qin Li, Ze-Yu Pan, Xuan Zhao, and Ping-An Du. 2022. "Improvement of the SPICE Model of Diode Based on Measurement and Nonlinear Fitting Random Optimization Algorithm" Electronics 11, no. 21: 3461. https://doi.org/10.3390/electronics11213461
APA StyleRen, D., Xu, G., Li, J. -Q., Pan, Z. -Y., Zhao, X., & Du, P. -A. (2022). Improvement of the SPICE Model of Diode Based on Measurement and Nonlinear Fitting Random Optimization Algorithm. Electronics, 11(21), 3461. https://doi.org/10.3390/electronics11213461