A Bilateral Cooperative Strategy for Swarm Escort under the Attack of Aggressive Swarms
Abstract
:1. Introduction
1.1. Related Work
1.2. Contributions
- To improve the survivability of a HVU, the HVU are guided according to the positions of defenders and attackers. In particular, three evasion strategies are adaptively selected by inferring the threat level.
- A noncentralized escort algorithm is proposed and the defenders in the swarm distribute in two circles centered at the moving HVU, namely dual-layer formation. Within each circle, the defenders cluster into several sub-swarms rather than uniformly distribute over the whole circle.
- Different aggressive swarm models are used to validate the proposed bilateral cooperative strategy through numerical simulations.
2. Proposed Methods
2.1. Problem Formulation
2.2. Aggressive Swarm Model
2.2.1. Non-Cooperative Swarm Attack
2.2.2. Single-Swarm Attack
2.2.3. Multi-Subswarm Attack
2.3. Bilateral Cooperative Strategy
2.3.1. Escort Model
2.3.2. Formulations of Meta Rules
- (a)
- Position synergy rule
- (b)
- Velocity synergy rule
- (c)
- Anti-intrusion rule
- (d)
- Escort formation rule
2.3.3. HVU Cooperative Strategy
- (a)
- Threat assessment
- (b)
- Evasion strategy
3. Results
3.1. Escort without Swarm Attacks
3.2. Escort against Swarm Attacks
3.3. Sensitivity to Parameters
3.4. Validation of Real-World Settings
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Conradt, L.; Roper, T.J. Consensus Decision Making in Animals. Trends Ecol. Evol. 2005, 20, 449–456. [Google Scholar] [CrossRef]
- Couzin, I.D.; Krause, J. Self-Organization and Collective Behavior in Vertebrates. Adv. Study Behav. 2003, 32, 10–1016. [Google Scholar]
- Real, L.A. Animal Choice Behavior and the Evolution of Cognitive Architecture. Science 1991, 253, 980–987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beekman, M.; Fathke, R.L.; Seeley, T.D. How Does an Informed Minority of Scouts Guide a Honeybee Swarm as It Flies to Its New Home? Anim. Behav. 2006, 71, 161–171. [Google Scholar] [CrossRef]
- Beekman, M.; Gilchrist, A.L.; Duncan, M.; Sumpter, D.J.T. What Makes a Honeybee Scout? Behav. Ecol. Sociobiol. 2007, 61, 985–995. [Google Scholar] [CrossRef]
- Giraldeau, L.-A.; Caraco, T. Social Foraging Theory; Princeton University Press: Princeton, NJ, USA, 2018; ISBN 978-0-691-18834-8. [Google Scholar]
- Krause, J.; Ruxton, G.D.; Ruxton, G. Living in Groups; OUP Oxford: Oxford, UK, 2002; ISBN 978-0-19-850818-2. [Google Scholar]
- Li, R.; Ma, H. Research on UAV Swarm Cooperative Reconnaissance and Combat Technology. In Proceedings of the 2020 3rd International Conference on Unmanned Systems (ICUS), Harbin, China, 27 November 2020; pp. 996–999. [Google Scholar]
- Smalley, D. Locust: Autonomous, Swarming Uavs Fly into the Future. Off. Nav. Res. 2015, 14. [Google Scholar]
- Shan, Y.; Huang, D. Analysis of the Operational Characteristics of the US Aircraft Carrier Battle Group. In Proceedings of the Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2021; Volume 1721, p. 012064. [Google Scholar]
- Xing, D.; Zhen, Z.; Gong, H. Offense–Defense Confrontation Decision Making for Dynamic UAV Swarm versus UAV Swarm. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2019, 233, 5689–5702. [Google Scholar] [CrossRef]
- Shishika, D.; Kumar, V. Local-Game Decomposition for Multiplayer Perimeter-Defense Problem. In Proceedings of the 2018 IEEE Conference on Decision and Control (CDC), Miami, FL, USA, 17–19 December 2018; pp. 2093–2100. [Google Scholar]
- Zha, W.; Chen, J.; Peng, Z.; Gu, D. Construction of Barrier in a Fishing Game With Point Capture. IEEE Trans. Cybern. 2017, 47, 1409–1422. [Google Scholar] [CrossRef] [PubMed]
- English, J.T. A Defender-Aware Attacking Guidance Policy for the TAD Differential Game. Master’s Thesis, Ohio University, Athens, OH, USA, 2020. [Google Scholar]
- Boyell, R.L. Defending a Moving Target Against Missile or Torpedo Attack. IEEE Trans. Aerosp. Electron. Syst. 1976, AES-12, 522–526. [Google Scholar] [CrossRef]
- Liang, L.; Deng, F.; Peng, Z.; Li, X.; Zha, W. A Differential Game for Cooperative Target Defense. Automatica 2019, 102, 58–71. [Google Scholar] [CrossRef]
- Selvi, S.T.; Malmathanraj, R.; Raj, S.M. Solving Missile Defense and Interceptor Allocation Problem Using Reinforcement Learning and Optimization Techniques. Int. J. Recent Trends Eng. 2009, 2, 117. [Google Scholar]
- Xuan, S.; Ke, L. UAV Swarm Attack-Defense Confrontation Based on Multi-Agent Reinforcement Learning. In Advances in Guidance, Navigation and Control; Springer: Berlin/Heidelberg, Germany, 2022; pp. 5599–5608. [Google Scholar]
- Wang, B.; Li, S.; Gao, X.; Xie, T. UAV Swarm Confrontation Using Hierarchical Multiagent Reinforcement Learning. Int. J. Aerosp. Eng. 2021, 2021, 3360116. [Google Scholar] [CrossRef]
- Duan, H.; Li, P.; Yu, Y. A Predator-Prey Particle Swarm Optimization Approach to Multiple UCAV Air Combat Modeled by Dynamic Game Theory. IEEE/CAA J. Autom. Sin. 2015, 2, 11–18. [Google Scholar] [CrossRef]
- Littman, M.L. Markov Games as a Framework for Multi-Agent Reinforcement Learning. In Machine Learning Proceedings 1994; Elsevier: Amsterdam, The Netherlands, 1994; pp. 157–163. [Google Scholar]
- Lowe, R.; Wu, Y.I.; Tamar, A.; Harb, J.; Pieter Abbeel, O.; Mordatch, I. Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments. Adv. Neural Inf. Process. Syst. 2017, 30. [Google Scholar]
- Lien, J.-M.; Bayazit, O.B.; Sowell, R.T.; Rodriguez, S.; Amato, N.M. Shepherding Behaviors. In Proceedings of the IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA’04. 2004, New Orleans, LA, USA, 26 April–1 May 2004; Volume 4, pp. 4159–4164. [Google Scholar]
- Lien, J.-M.; Pratt, E. Interactive Planning for Shepherd Motion. In Proceedings of the AAAI Spring Symposium: Agents that Learn from Human Teachers, Stanford, CA, USA, 23–25 March 2009; pp. 95–102. [Google Scholar]
- Pierson, A.; Schwager, M. Bio-Inspired Non-Cooperative Multi-Robot Herding. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 1843–1849. [Google Scholar]
- Chipade, V.S.; Marella, V.S.A.; Panagou, D. Aerial Swarm Defense by StringNet Herding: Theory and Experiments. Front. Robot. AI 2021, 8, 640446. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Yu, Y.; Ma, J.; Wu, J.; Han, G.; Shi, J.; Gao, L. Autonomous Cooperative Flocking for Heterogeneous Unmanned Aerial Vehicle Group. IEEE Trans. Veh. Technol. 2021, 70, 12477–12490. [Google Scholar] [CrossRef]
- Steinberg, A.N. An Approach to Threat Assessment. In Proceedings of the 2005 7th International Conference on Information Fusion, Philadelphia, PA, USA, 25–28 July 2005; Volume 2, p. 8. [Google Scholar]
- Gonsalves, P.G.; Burge, J.E.; Harper, K.A. Architecture for Genetic Algorithm-Based Threat Assessment. In Proceedings of the Sixth International Conference of Information Fusion, Cairns, QLD, Australia, 8–11 July 2003; Volume 2, p. 965971. [Google Scholar]
- Gonsalves, P.; Cunningham, R.; Ton, N.; Okon, D. Intelligent Threat Assessment Processor (ITAP) Using Genetic Algorithms and Fuzzy Logic. In Proceedings of the Third International Conference on Information Fusion, Paris, France, 10–13 July 2000; Volume 2, pp. THB1/18–THB1/24. [Google Scholar]
- Okello, N.; Thoms, G. Threat Assessment Using Bayesian Networks. In Proceedings of the 6th International Conference on Information Fusion, Cairns, QLD, Australia, 8–11 July 2003; pp. 1102–1109. [Google Scholar]
- Luo, R.; Huang, S.; Zhao, Y.; Song, Y. Threat Assessment Method of Low Altitude Slow Small (LSS) Targets Based on Information Entropy and AHP. Entropy 2021, 23, 1292. [Google Scholar] [CrossRef]
- Gazi, V.; Passino, K.M. A Class of Repulsion/Attraction Forces for Swarm Aggregations. Int. J. Control 2004, 77, 1567–1579. [Google Scholar] [CrossRef]
- Chen, Z.; Liao, H.; Chu, T. Clustering in Multi-Agent Swarms via Medium-Range Interaction. EPL Europhys. Lett. 2011, 96, 40015. [Google Scholar] [CrossRef]
- Pearl, J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference; Morgan Kaufmann: New York, NY, USA, 1988; ISBN 1-55860-479-0. [Google Scholar]
- Darwiche, A. Modeling and Reasoning with Bayesian Networks; Cambridge University Press: Cambridge, UK, 2009; ISBN 978-0-521-88438-9. [Google Scholar]
- Ester, M.; Kriegel, H.-P.; Sander, J.; Xu, X. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, Portland, OR, USA, 2 August 1996; Volume 96, pp. 226–231. [Google Scholar]
Conditional Probability | Variable | Threat Level (TL) | ||
---|---|---|---|---|
L | M | H | ||
P(D_attack|TL) | D_attack1 | 0.02 | 0.10 | 0.83 |
D_attack2 | 0.40 | 0.58 | 0.10 | |
D_attack3 | 0.58 | 0.32 | 0.07 | |
P(N_sup|TL) | N_sup1 | 0.15 | 0.27 | 0.58 |
N_sup2 | 0.35 | 0.50 | 0.27 | |
N_sup3 | 0.50 | 0.23 | 0.15 | |
P(β|TL) | β1 | 0.20 | 0.35 | 0.50 |
β2 | 0.37 | 0.45 | 0.35 | |
β3 | 0.43 | 0.20 | 0.15 |
B | B1 | B2 | B3 | B4 |
---|---|---|---|---|
B1 | 1 | 1/2 | 3 | 4 |
B2 | 2 | 1 | 4 | 5 |
B3 | 1/3 | 1/4 | 1 | 2 |
B4 | 1/4 | 1/5 | 1/2 | 1 |
Parameter | Description | Value |
---|---|---|
HVU | ||
Perception radius of the HVU | 10 m | |
Constant speed | 1 m/s | |
Escort swarm | ||
The maximum speed of defenders | 2 m/s | |
Escort potential field radius | 5 m | |
, ,, Simulation & environment | Weights of interaction rules | 5, 2, 10, 20 |
Time interval | 1 s | |
The amplitude of random noise | 0.1 | |
Maxsimstep | Maximum simulation steps | 1500 |
The maximum speed of attackers | 3 m/s |
Parameters | Description | Value/Unit |
---|---|---|
Maximum speed | 30 m/s | |
Maximum acceleration | 10 m/s2 | |
Maximum turning angular velocity | 0.6 rad/s | |
Speed noise | N (0.34,0.9) | |
Angular velocity noise | N (−0.4,1.0) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, B.; Peng, X. A Bilateral Cooperative Strategy for Swarm Escort under the Attack of Aggressive Swarms. Electronics 2022, 11, 3643. https://doi.org/10.3390/electronics11223643
Zou B, Peng X. A Bilateral Cooperative Strategy for Swarm Escort under the Attack of Aggressive Swarms. Electronics. 2022; 11(22):3643. https://doi.org/10.3390/electronics11223643
Chicago/Turabian StyleZou, Bingyun, and Xingguang Peng. 2022. "A Bilateral Cooperative Strategy for Swarm Escort under the Attack of Aggressive Swarms" Electronics 11, no. 22: 3643. https://doi.org/10.3390/electronics11223643
APA StyleZou, B., & Peng, X. (2022). A Bilateral Cooperative Strategy for Swarm Escort under the Attack of Aggressive Swarms. Electronics, 11(22), 3643. https://doi.org/10.3390/electronics11223643