Quiescent Optical Solitons with Cubic–Quartic and Generalized Cubic–Quartic Nonlinearity
Abstract
:1. Introduction
2. The Enhanced Kudryashov’s Procedure
3. Cubic–Quartic Nonlinearity
3.1. Linear Temporal Evolution
3.2. Generalized Temporal Evolution
4. Generalized Cubic-Quartic Nonlinearity
4.1. Linear Temporal Evolution
4.2. Generalized Temporal Evolution
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ekici, M. Stationary optical solitons with complex Ginzburg–Landau equation having nonlinear chromatic dispersion and Kudryashov’s refractive index structures. Phys. Lett. A 2022, 440, 128146. [Google Scholar] [CrossRef]
- Ekici, M. Stationary optical solitons with Kudryashov’s quintuple power law nonlinearity by extended Jacobi’s elliptic function expansion. J. Nonlinear Opt. Phys. Mater. 2023, 32, 2350008. [Google Scholar] [CrossRef]
- Hong, W.P. Existence Conditions for Stable Stationary Solitons of the Cubic-Quintic Complex Ginzburg-Landau Equation with a Viscosity Term. Z. Naturforschung A 2008, 63, 757–762. [Google Scholar] [CrossRef] [Green Version]
- Kudryashov, N.A. Stationary solitons of the model with nonlinear chromatic dispersion and arbitrary refractive index. Optik 2022, 259, 168888. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Stationary solitons of the generalized nonlinear Schrödinger equation with nonlinear dispersion and arbitrary refractive index. Appl. Math. Lett. 2022, 128, 107888. [Google Scholar] [CrossRef]
- Sonmezoglu, A. Stationary optical solitons having Kudryashov’s quintuple power law nonlinearity by extended G/G–expansion. Optik 2022, 253, 168521. [Google Scholar] [CrossRef]
- Sonmezoglu, A.; Ekici, M.; Biswas, A. Stationary optical solitons with cubic–quartic law of refractive index and nonlinear chromatic dispersion. Phys. Lett. A 2021, 410, 127541. [Google Scholar] [CrossRef]
- Yalçı, A.M.; Ekici, M. Stationary optical solitons with complex Ginzburg–Landau equation having nonlinear chromatic dispersion. Opt. Quantum Electron. 2022, 54, 167. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z. Envelope compactons and solitary patterns. Phys. Lett. A 2006, 355, 212–215. [Google Scholar] [CrossRef]
- Anam, N.; Ahmed, T.; Atai, J. Bragg Grating Solitons in a Dual-core System with Separated Bragg Grating and Cubic-quintic Nonlinearity. Photoptics 2019, 24–28. [Google Scholar] [CrossRef]
- Anam, N.; Atai, J. Dynamics of colliding Bragg solitons in a dual-core system with separated grating and cubic-quintic nonlinearity. In Proceedings of the 2022 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD), Online, 12–16 September 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 205–206. [Google Scholar]
- Anam, N.; Atai, J. Moving Bragg Solitons in a Coupler with Separated Grating and Cubic-Quintic Nonlinearity. In Proceedings of the 2021 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD), Turin, Italy, 13–17 September 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 105–106. [Google Scholar]
- Anam, N.; Atai, J. Interactions of Bragg Solitons in a Semilinear Coupler with Separated Grating and Cubic-Quintic Nonlinearity. In Proceedings of the 2019 IEEE Photonics Conference (IPC), San Antonio, TX, USA, 29 September–3 October 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–2. [Google Scholar]
- Atai, J.; Malomed, B.A. Stability and interactions of solitons in two-component active systems. Phys. Rev. E 1996, 54, 4371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atai, J.; Malomed, B.A. Spatial solitons in a medium composed of self-focusing and self-defocusing layers. Phys. Lett. A 2002, 298, 140–148. [Google Scholar] [CrossRef] [Green Version]
- Inui, K.; Nohara, B.T.; Yamano, T.; Arimoto, A. On Solitons of Standing Wave Solutions for the Cubic-Quartic Nonlinear Schrodinger equation (Dynamics of Functional Equations and Mathematical Models). Kyoto Univ. Res. Inf. Repos. 2009, 1637, 145–156. [Google Scholar]
- Liu, N.; Guo, B. Solitons and rogue waves of the quartic nonlinear Schrödinger equation by Riemann–Hilbert approach. Nonlinear Dyn. 2020, 100, 629–646. [Google Scholar] [CrossRef]
- Dutta, H.; Günerhan, H.; Ali, K.K.; Yilmazer, R. Exact soliton solutions to the cubic-quartic non-linear Schrödinger equation with conformable derivative. Front. Phys. 2020, 8, 62. [Google Scholar] [CrossRef]
- Nohara, B.T. Governing equations of envelope surface created by nearly bichromatic waves propagating on an elastic plate and their stability. Jpn. J. Ind. Appl. Math. 2005, 22, 87–109. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arnous, A.H.; Biswas, A.; Yıldırım, Y.; Moraru, L.; Moldovanu, S.; Moshokoa, S.P. Quiescent Optical Solitons with Cubic–Quartic and Generalized Cubic–Quartic Nonlinearity. Electronics 2022, 11, 3653. https://doi.org/10.3390/electronics11223653
Arnous AH, Biswas A, Yıldırım Y, Moraru L, Moldovanu S, Moshokoa SP. Quiescent Optical Solitons with Cubic–Quartic and Generalized Cubic–Quartic Nonlinearity. Electronics. 2022; 11(22):3653. https://doi.org/10.3390/electronics11223653
Chicago/Turabian StyleArnous, Ahmed H., Anjan Biswas, Yakup Yıldırım, Luminita Moraru, Simona Moldovanu, and Seithuti P. Moshokoa. 2022. "Quiescent Optical Solitons with Cubic–Quartic and Generalized Cubic–Quartic Nonlinearity" Electronics 11, no. 22: 3653. https://doi.org/10.3390/electronics11223653
APA StyleArnous, A. H., Biswas, A., Yıldırım, Y., Moraru, L., Moldovanu, S., & Moshokoa, S. P. (2022). Quiescent Optical Solitons with Cubic–Quartic and Generalized Cubic–Quartic Nonlinearity. Electronics, 11(22), 3653. https://doi.org/10.3390/electronics11223653