High-Precision Iterative Preconditioned Gauss–Seidel Detection Algorithm for Massive MIMO Systems
Abstract
:1. Introduction
1.1. Contributions
1.2. Paper Outline
1.3. Notation
2. Massive MIMO System Model and Signal Detection
3. Proposed Algorithm
3.1. Proposed Initialization
3.2. Proposed Preconditioning Technique
Algorithm 1: Proposed algorithm. |
1Input: H, y, M, K, Niter, Ex, σ2 |
2Preconditioning: |
3 |
4 |
5D = diag(A) |
6 |
7R = D−1A |
8 |
9 identity matrix |
10 |
11 |
12 |
13Initialization: |
14 |
15 |
16Iteration: |
17fordo |
18 for n = 1, …, K do |
19 |
20 End for |
21End for |
22Output: Detected signal, ; |
4. Numerical Results
4.1. Comparison of Different Initializers
4.2. Error Rate Performance
4.3. Complexity Analysis and Comparison
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Qi, Y.; Hunukumbure, M.; Nekovee, M.; Lorca, J.V.; Sgardoni, V. Quantifying data rate and bandwidth requirements for immersive 5G experience. In Proceedings of the 2016 IEEE International Conference on Communications Workshops (ICC), Kuala Lumpur, Malaysia, 23–27 May 2016; pp. 455–461. [Google Scholar]
- Narayanan, S.; Tsolkas, D.; Passas, N.; Merakos, L. Nb-iot: A Candidate Technology for Massive IOT in the 5G Era. In Proceedings of the 2018 IEEE 23rd International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), Barcelona, Spain, 17–19 September 2018; pp. 1–6. [Google Scholar]
- Kalalas, C.; Alonso-Zarate, J. Massive Connectivity in 5G and Beyond: Technical Enablers for the Energy and Automotive Verticals. In Proceedings of the 2020 2nd 6G Wireless Summit, 6G SUMMIT, Levi, Finland, 17–20 March 2020; pp. 1–5. [Google Scholar]
- Rusek, F.; Persson, D.; Lau, B.K.; Larsson, E.G.; Marzetta, T.L.; Edfors, O.; Tufvesson, F. Scaling up MIMO: Opportunities and Challenges with Very Large Arrays. IEEE Signal Proces. Mag. 2013, 30, 40–60. [Google Scholar] [CrossRef] [Green Version]
- Lu, L.; Li, G.Y.; Swindlehurst, A.L.; Ashikhmin, A.; Zhang, R. An Overview of Massive MIMO: Benefits and Challenges. IEEE J. Sel. Top. Signal Proc. 2014, 8, 742–748. [Google Scholar] [CrossRef]
- Larsson, E.G.; Edfors, O.; Tufvesson, F.; Marzetta, T.L. Massive MIMO for Next Generation Wireless Systems. IEEE Commun. Mag. 2014, 52, 186–195. [Google Scholar] [CrossRef] [Green Version]
- Feng, H.; Zhao, X.; Li, Z.; Xing, S. A Novel Iterative Discrete Estimation Algorithm for Low-Complexity Signal Detection in Uplink Massive MIMO Systems. Electronics 2019, 8, 980. [Google Scholar] [CrossRef] [Green Version]
- Marzetta, T.L. Noncooperative Cellular Wireless with Unlimited Numbers of Base Station Antennas. IEEE Trans. Wirel. Commun. 2010, 9, 3590–3600. [Google Scholar]
- Ngo, H.Q.; Larsson, E.G.; Marzetta, T.L. Energy and Spectral Efficiency of Very Large Multiuser MIMO Systems. IEEE Trans. Commun. 2013, 61, 1436–1449. [Google Scholar]
- Hoydis, J.; Ten Brink, S.; Debbah, M. Massive MIMO in the UL/DL of Cellular Networks: How Many Antennas Do We Need? IEEE J. Sel. Areas Commun. 2013, 31, 160–171. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Xu, L.; Xu, L.; Xu, D. Direction of departure (DOD) and direction of arrival (DOA) estimation in MIMO radar with reduced-dimension MUSIC. IEEE Commun. Lett. 2010, 14, 1161–1163. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, D. Angle estimation in bistatic MIMO radar using improved reduced dimension Capon algorithm. J. Syst. Eng. Elec. 2013, 24, 84–89. [Google Scholar] [CrossRef]
- Damen, M.O.; HE, G.; Caire, G. On Maximum-Likelihood Detection and the Search for the Closest Lattice Point. IEEE Trans. Inf. Theory 2003, 49, 2389–2402. [Google Scholar] [CrossRef] [Green Version]
- Shahabuddin, S.; Silven, O.; Juntti, M. Programmable asips for multimode mimo transceiver. J. Signal Process. Syst. 2018, 90, 1369–1381. [Google Scholar] [CrossRef] [Green Version]
- Albreem, M.A.; Ismail, N.A.H.B. A review: Detection techniques for LTE system. Telecommun. Syst. 2016, 63, 153–168. [Google Scholar] [CrossRef]
- Altamirano, C.D.; Minango, J.; De Almeida, C.; Orozco, N. On the Asymptotic BER of MMSE Detector in Massive MIMO Systems. In Proceedings of the International Conference on Applied Technologies, Quito, Ecuador, 3–5 December 2019; pp. 57–68. [Google Scholar]
- Wu, M.; Yin, B.; Wang, G.; Dick, C.; Cavallaro, J.R.; Studer, C. Large-Scale MIMO Detection for 3GPP LTE: Algorithms and FPGA Implementations. IEEE J. Sel. Top. Signal Process. 2014, 8, 916–929. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Zeng, H.; Ji, B.; Zhang, G. Low-Complexity Implicit Detection for Massive MIMO Using Neumann Series. IEEE Trans. Veh. Technol. 2022, 71, 9044–9049. [Google Scholar] [CrossRef]
- Albreem, M.A. Approximate Matrix Inversion Methods for Massive MIMO Detectors. In Proceedings of the 2019 IEEE 23rd International Symposium on Consumer Technologies (ISCT), Selangor, Malaysia, 2–4 December 2019; pp. 87–92. [Google Scholar]
- Tang, C.; Liu, C.; Yuan, L.; Xing, Z. High precision low complexity matrix inversion based on Newton iteration for data detection in the massive MIMO. IEEE Commun. Lett. 2016, 20, 490–493. [Google Scholar]
- Dai, L.; Gao, X.; Su, X.; Han, S.; I, C.L.; Wang, Z. Low-Complexity Soft-Output Signal Detection Based on Gauss–Seidel Method for Uplink Multiuser Large-Scale MIMO Systems. IEEE Trans. Veh. Technol. 2015, 64, 4839–4845. [Google Scholar] [CrossRef]
- Khoso, I.A.; Zhang, X.; Shaikh, A.H.; Sahito, F.; Dayo, Z.A. Improved Gauss–Seidel detector for large-scale MIMO systems. IET Commun. 2022, 16, 291–302. [Google Scholar] [CrossRef]
- Zhang, C.; Wu, Z.; Studer, C.; Zhang, Z.; You, X. Efficient Soft-Output Gauss–Seidel Data Detector for Massive MIMO Systems. IEEE Trans. Circuits Syst. I Regul. Pap. 2021, 68, 5049–5060. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Ge, L.; You, X.; Zhang, C. Efficient near-MMSE detector for large-scale MIMO systems. In Proceedings of the IEEE Workshop on Signal Processing Systems, Lorient, France, 3–5 October 2017; pp. 1–6. [Google Scholar]
- Minango, J.; de Almeida, C.; Daniel Altamirano, C. Low-complexity MMSE detector for massive MIMO systems based on Damped Jacobi method. In Proceedings of the 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Montreal, QC, Canada, 8–13 October 2017; pp. 1–5. [Google Scholar]
- Khoso, I.A.; Zhang, X.; Dai, X.; Ahmed, A.; Dayo, Z.A. Joint steepest descent and non-stationary Richardson method for low-complexity detection in massive MIMO systems. Trans. Emerg. Telecommun. Technol. 2022, 33, e4566. [Google Scholar] [CrossRef]
- Khoso, I.A.; Zhang, X.; Shaikh, A.H. Low-complexity signal detection for large-scale MIMO systems with second-order Richardson method. Electron. Lett. 2020, 56, 467–469. [Google Scholar] [CrossRef]
- Zhang, Z.; Dai, X.; Dong, Y.; Wang, X.; Liu, T. A low-complexity signal detection utilizing AOR method for massive MIMO systems. China Commun. 2017, 41, 269–278. [Google Scholar] [CrossRef]
- Tu, Y.-P.; Chen, C.-Y.; Lin, K.-H. An Efficient Two-Stage Receiver Base on AOR Iterative Algorithm and Chebyshev Acceleration for Uplink Multiuser Massive-MIMO OFDM Systems. Electronics 2022, 11, 92. [Google Scholar] [CrossRef]
- Chataut, R.; Akl, R.; Dey, U.K.; Robaei, M. SSOR Preconditioned Gauss–Seidel Detection and Its Hardware Architecture for 5G and beyond Massive MIMO Networks. Electronics 2021, 10, 578. [Google Scholar] [CrossRef]
- Jin, J.; Xue, Y.; Ueng, Y.-L.; You, X.; Zhang, C. A split pre-conditioned conjugate gradient method for massive mimo detection. In Proceedings of the 2017 IEEE International Workshop on Signal Processing Systems (SiPS), Lorient, France, 3–5 October 2017; pp. 1–6. [Google Scholar]
- Jing, X.; Li, A.; Liu, H. A low-complexity Lanczos-algorithm-based detector with soft-output for multiuser massive MIMO systems. Digit. Signal Process. 2017, 69, 41–49. [Google Scholar] [CrossRef]
- Seidel, P.; Gregorek, D.; Paul, S.; Rust, J. Efficient initialization of iterative linear massive MIMO uplink detectors by binary Jacobi synthesis. In Proceedings of the WSA 2019, 23rd International ITG Workshop on Smart Antennas, Vienna, Austria, 24–26 April 2019; pp. 1–5. [Google Scholar]
- Gesbert, D.; Shafi, M.; Shiu, D.; Smith, P.J.; Naguib, A. From Theory to Practice: An Overview of MIMO Space-Time Coded Wireless Systems. IEEE J. Sel. Areas Commun. 2003, 21, 281–302. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Kim, S. Evaluation of MMSE-based iterative soft detection schemes for coded massive MIMO system. IEEE Access 2018, 7, 10166–10175. [Google Scholar] [CrossRef]
- Narasimhan, T.L.; Chockalingam, A. Channel hardening-exploiting message passing (CHEMP) receiver in large-scale MIMO systems. IEEE J. Sel. Top. Signal Process. 2014, 8, 847–860. [Google Scholar] [CrossRef] [Green Version]
- Marchenko, V.A.; Pastur, L.A. Distribution of eigenvalues for some sets of random matrices. Math. USSR Sbornik 1967, 1, 457–483. [Google Scholar] [CrossRef]
- Zhang, Q.; Jin, S.; Wong, K.K.; Zhu, H.; Matthaiou, M. Power scaling of uplink massive MIMO systems with arbitrary-rank channel means. IEEE J. Sel. Topics Signal Process. 2014, 8, 966–981. [Google Scholar] [CrossRef] [Green Version]
- Hackbusch, W. Iterative Solution of Large Sparse Systems of Equations, 2nd ed.; Springer: Geneva, Switzerland, 2016. [Google Scholar]
- Evans, D.J. The use of pre-conditioning in iterative methods for solving linear equations with symmetric positive definite matrices. IMA J. Appl. Math. 1967, 4, 295–314. [Google Scholar] [CrossRef]
- Niki, H.; Harada, K.; Morimoto, M.; Sakakihara, M. The survey of preconditioners used for accelerating the rate of convergence in the Gauss–Seidel method. J. Comput. Appl. Math. 2004, 164, 587–600. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Number of antennas at BS | M ∈ {128, 256} |
Number of users | K ∈ {16, 32, 64, 5:100} |
User antennas | Single-antenna users |
SNR range | SNR ∈ {8:2:18} dB |
Average SNR per receive antenna | KEx/N0 |
Number of realizations in the Monte Carlo simulations | 25 × 103 |
Number of iterations for iterative detectors | 1 to 6 |
Channel | MIMO |
Channel model | Uncorrelated Rayleigh fading |
Channel availability | Perfectly known at the receiver |
Modulation type | 16-QAM, 64-QAM |
Transmission | Uncoded |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, M.; Zhang, X.; Khoso, I.A.; Shi, X.; Qian, Y. High-Precision Iterative Preconditioned Gauss–Seidel Detection Algorithm for Massive MIMO Systems. Electronics 2022, 11, 3806. https://doi.org/10.3390/electronics11223806
Ahmad M, Zhang X, Khoso IA, Shi X, Qian Y. High-Precision Iterative Preconditioned Gauss–Seidel Detection Algorithm for Massive MIMO Systems. Electronics. 2022; 11(22):3806. https://doi.org/10.3390/electronics11223806
Chicago/Turabian StyleAhmad, Mushtaq, Xiaofei Zhang, Imran A. Khoso, Xinlei Shi, and Yang Qian. 2022. "High-Precision Iterative Preconditioned Gauss–Seidel Detection Algorithm for Massive MIMO Systems" Electronics 11, no. 22: 3806. https://doi.org/10.3390/electronics11223806
APA StyleAhmad, M., Zhang, X., Khoso, I. A., Shi, X., & Qian, Y. (2022). High-Precision Iterative Preconditioned Gauss–Seidel Detection Algorithm for Massive MIMO Systems. Electronics, 11(22), 3806. https://doi.org/10.3390/electronics11223806