Integrated Demand Response Design of Integrated Energy System with Mobile Hydrogen Energy Storage in Time-Domain Two-Port Model
Abstract
:1. Introduction
2. Laplace Domain Physics Model of the IES
2.1. Unified Model of the IES
2.1.1. Electricity Network
2.1.2. Thermal Network
2.1.3. Natural Gas Network
2.1.4. MHES Network
2.2. Establishment of the IES Generalized Admittance Matrix
3. IES Time-Domain Two-Port Model Considering Delay
4. IDR Modeling
4.1. Modeling of Multienergy Coupling Equipment
- (a)
- Power grid to gas network: MT
- (b)
- Power grid to thermal network: MT and AC
- (c)
- Gas network to thermal network: GB
- (d)
- MHES network to power grid: PC
4.2. Objective Function of IDR
4.3. IDR Constraints
4.3.1. Energy Balance Constraints
4.3.2. Equipment Output Constraints and Energy Storage Constraints
4.3.3. Energy Purchase Constraints
4.3.4. Demand Response Constraint
4.4. IDR Model Considering the Delay
5. Case Study
5.1. Time-Domain Two-Port Model Validation: Part 1
5.2. Time-Domain Two-Port Model Validation: Part 2
5.3. IDR Validation
6. Discussion
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Appendix B
Coefficient | Values | Coefficient | Values | |
---|---|---|---|---|
10 | 22:00–7:59 | 0.06 | ||
8:00–21:59 | 0.11 | |||
0.9 | 22:00–7:59 | 0.05 | ||
8:00–21:59 | 0.22 | |||
2 | 0.005 | |||
0.8 | 0.045 | |||
0.9 | 0.012 | |||
0.9 | 0.012 |
References
- Wang, Y.; Zhang, N.; Kang, C.Q. Review and prospect of optimal planning and operation of energy hub in Energy Internet. Proc. CSEE 2015, 35, 5669–5681. [Google Scholar]
- Geidl, M.; Koeppel, G.; Favre-Perrod, P.; Klockl, B.; Andersson, G.; Frohlich, K. Energy hubs for the future. IEEE Power Energy Mag. 2007, 5, 24–30. [Google Scholar] [CrossRef]
- Xie, S.; Hu, Z.; Wang, J.; Chen, Y. The optimal planning of smart multi-energy systems incorporating transportation, natural gas and active distribution networks. Appl. Energy 2020, 269, 115006. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, H.; Hong, F.; Yang, J.; Chen, Z.; Cui, H.; Feng, J. Modeling and optimization of combined heat and power with power-to-gas and carbon capture system in integrated energy system. Energy 2021, 236, 121392. [Google Scholar] [CrossRef]
- Liu, X.; Wu, J.; Jenkins, N.; Bagdanavicius, A. Combined analysis of electricity and heat networks. Appl. Energy 2016, 162, 1238–1250. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Lv, C.; Li, P.; Song, G.; Li, S.; Xu, X.; Wu, J. Modeling and optimal operation of community integrated energy systems: A case study from China. Appl. Energy 2018, 230, 1242–1254. [Google Scholar] [CrossRef]
- Panah, P.G.; Cui, X.; Bornapour, M.; Hooshmand, R.-A.; Guerrero, J.M. Marketability analysis of green hydrogen production in Denmark: Scale-up effects on grid-connected electrolysis. Int. J. Hydrog. Energy 2022, 47, 12443–12455. [Google Scholar] [CrossRef]
- Han, G.; Kwon, Y.K.; Kim, J.B.; Lee, S.; Bae, J.; Cho, E.; Lee, B.J.; Cho, S.; Park, J. Development of a high-energy-density portable/mobile hydrogen energy storage system incorporating an electrolyzer, a metal hydride and a fuel cell. Appl. Energy 2020, 259, 114175. [Google Scholar] [CrossRef]
- Li, P.; Wang, Z.; Wang, N.; Yang, W.; Li, M.; Zhou, X.; Yin, Y.; Wang, J.; Guo, T. Stochastic robust optimal operation of community integrated energy system based on integrated demand response. Int. J. Electr. Power Energy Syst. 2021, 128, 106735. [Google Scholar] [CrossRef]
- Xiang, Y.; Cai, H.; Gu, C.; Shen, X. Cost-benefit analysis of integrated energy system planning considering demand response. Energy 2020, 192, 116632. [Google Scholar] [CrossRef]
- Finn, P.; Fitzpatrick, C. Demand side management of industrial electricity consumption: Promoting the use of renewable energy through real-time pricing. Appl. Energy 2014, 113, 11–21. [Google Scholar] [CrossRef]
- Tan, H.; Yan, W.; Ren, Z.; Wang, Q.; Mohamed, M.A. A robust dispatch model for integrated electricity and heat networks considering price-based integrated demand response. Energy 2022, 239, 121875. [Google Scholar] [CrossRef]
- Zheng, S.; Sun, Y.; Li, B.; Qi, B.; Zhang, X.; Li, F. Incentive-based integrated demand response for multiple energy carriers under complex uncertainties and double coupling effects. Appl. Energy 2021, 283, 116254. [Google Scholar] [CrossRef]
- Bahrami, S.; Sheikhi, A. From demand response in smart grid toward integrated demand response in smart energy hub. IEEE Trans. Smart Grid 2015, 7, 650–658. [Google Scholar] [CrossRef]
- Huang, W.; Zhang, N.; Kang, C.; Li, M.; Huo, M. From demand response to integrated demand response: Review and prospect of research and application. Prot. Control. Mod. Power Syst. 2019, 4, 12. [Google Scholar] [CrossRef] [Green Version]
- He, L.; Lu, Z.; Geng, L.; Zhang, J.; Li, X.; Guo, X. Environmental economic dispatch of integrated regional energy system considering integrated demand response. Int. J. Electr. Power Energy Syst. 2020, 116, 105525. [Google Scholar] [CrossRef]
- Li, X.; Tian, G.; Shi, Q.; Jiang, T.; Li, F.; Jia, H. Security region of natural gas network in electricity-gas integrated energy system. Int. J. Electr. Power Energy Syst. 2020, 117, 105601. [Google Scholar] [CrossRef]
- Ceseña EA, M.; Mancarella, P. Energy systems integration in smart districts: Robust optimization of multi-energy flows in integrated electricity, heat and gas networks. IEEE Trans. Smart Grid 2018, 10, 1122–1131. [Google Scholar] [CrossRef]
- Parra, D.; Valverde, L.; Pino, F.J.; Patel, M.K. A review on the role, cost and value of hydrogen energy systems for deep decarbonisation. Renew. Sustain. Energy Rev. 2019, 101, 279–294. [Google Scholar] [CrossRef]
- Yao, S.; Gu, W.; Lu, S.; Zhou, S.; Wu, Z.; Pan, G.; He, D. Dynamic optimal energy flow in the heat and electricity integrated energy system. IEEE Trans. Sustain. Energy 2021, 12, 179–190. [Google Scholar] [CrossRef]
- Chen, Q.; Hao, J.H.; Chen, L. Integral transport model for energy of electric-thermal integrated energy system. Autom. Electr. Power Syst. 2017, 41, 7–13. [Google Scholar]
- Yang, J.W.; Zhang, N.; Kang, C.Q. Analysis Theory of Generalized Electric Circuit for Multi-energy Networks—Part One Branch Model. Autom. Electr. Power Syst. 2020, 44, 21–32. [Google Scholar]
- Guo, P.; Han, G.; Hua, B. The energy postulate and choice of independence state parameters of the thermodynamic system. Coll. Phys. 2004, 23, 27–29. [Google Scholar]
- Gu, W.; Lu, S.; Yao, S.; Zhuang, W.; Pan, G. Hybrid time-scale operation optimization of integrated energy system. Electr. Power Autom. Equip. 2019, 39, 203–213. [Google Scholar]
- Alipour, M.; Zare, K.; Zareipour, H.; Seyedi, H. Hedging strategies for heat and electricity consumers in the presence of real-time DR programs. IEEE Trans. Sustain. Energy 2019, 10, 1262–1270. [Google Scholar] [CrossRef]
- Jabir, H.J.; Teh, J.; Ishak, D.; Abunima, H. Impacts of demand-side management on electrical power systems: A review. Energy 2018, 11, 1050. [Google Scholar] [CrossRef] [Green Version]
- Tronchin, L.; Manfren, M.; Nastasi, B. Energy efficiency, demand side management and energy storage technologies—A critical analysis of possible paths of integration in the built environment. Renew. Sustain. Energy Rev. 2018, 95, 341–353. [Google Scholar] [CrossRef]
- Jing, R.; Xie, M.N.; Wang, F.X.; Chen, L.X. Fair P2P energy trading between residential and commercial multi-energy systems enabling integrated demand-side management. Appl. Energy 2020, 262, 114551. [Google Scholar] [CrossRef]
- Duhr, P.; Christodoulou, G.; Balerna, C.; Salazar, M.; Cerofolini, A.; Onder, C.H. Time-optimal gearshift and energy management strategies for a hybrid electric race car. Appl. Energy 2021, 282, 115980. [Google Scholar] [CrossRef]
- Lu, S.; Gu, W.; Meng, K.; Yao, S.; Liu, B.; Dong, Z.Y. Thermal inertial aggregation model for integrated energy systems. IEEE Trans. Power Syst. 2020, 35, 2374–2387. [Google Scholar] [CrossRef]
- Gaslib. GasLib-135[EB/OL]. Available online: http://gaslib.zib.de/ (accessed on 3 August 2021).
- Matpower. IEEE-14[EB/OL]. Available online: https://matpower.org/ (accessed on 3 August 2021).
- Yang, J.; Ning, C.; Deb, C.; Zhang, F.; Cheong, D.; Lee, S.E.; Sekhar, C.; Tham, K.W. k-Shape clustering algorithm for building energy usage patterns analysis and forecasting model accuracy improvement. Energy Build. 2017, 146, 27–37. [Google Scholar] [CrossRef]
Thermal Network Parameters | MHES Network Parameters | ||
---|---|---|---|
Q(x,t) | Heat flow power (MW) | QH(x,t) | VESF power (MW) |
T | Water temperature (K) | SOC | Average SOC within dx |
m | Mass flow (kg/s) | mH | Average flow of MH (kg/s) |
v | Flow rate (m/s) | vH | Average velocity of MH (m/s) |
c | Specific heat capacity (J/kg·K) | cH | Virtual specific heat capacity (J/kg·SOC) |
λh | Thermal resistance coefficient | λ’H | Transport energy consumption coefficient |
Coefficient | Electricity Network | Thermal Network | Gas Network | MHES Network |
---|---|---|---|---|
R | ||||
Y | 0 | |||
L | ||||
C |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, H.; Ai, Q. Integrated Demand Response Design of Integrated Energy System with Mobile Hydrogen Energy Storage in Time-Domain Two-Port Model. Electronics 2022, 11, 4083. https://doi.org/10.3390/electronics11244083
Cheng H, Ai Q. Integrated Demand Response Design of Integrated Energy System with Mobile Hydrogen Energy Storage in Time-Domain Two-Port Model. Electronics. 2022; 11(24):4083. https://doi.org/10.3390/electronics11244083
Chicago/Turabian StyleCheng, Haoyuan, and Qian Ai. 2022. "Integrated Demand Response Design of Integrated Energy System with Mobile Hydrogen Energy Storage in Time-Domain Two-Port Model" Electronics 11, no. 24: 4083. https://doi.org/10.3390/electronics11244083
APA StyleCheng, H., & Ai, Q. (2022). Integrated Demand Response Design of Integrated Energy System with Mobile Hydrogen Energy Storage in Time-Domain Two-Port Model. Electronics, 11(24), 4083. https://doi.org/10.3390/electronics11244083