Wideband Lorenz Resonance Reconfigurable Metasurface for 5G+ Communications
Abstract
:1. Introduction
2. Unit Cell Modeling and Design
2.1. DC-Bias Network
2.2. Equivalent Circuit Model
2.3. Unit Cell Design
3. Fabrication and Measurement
3.1. Fabrication of MSRRA
3.2. Measurement of the Proposed MSRRA
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, Q.; Zhang, R. Beamforming Optimization for Wireless Network Aided by Intelligent Reflecting Surface with Discrete Phase Shifts. IEEE Trans. Commun. 2020, 68, 1838–1851. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Zhang, R. Towards Smart and Reconfigurable Environment: Intelligent Reflecting Surface Aided Wireless Network. IEEE Commun. Mag. 2020, 58, 106–112. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Chen, W.; Cao, H. Beamforming Design and Power Allocation for Transmissive RMS-Based Transmitter Architectures. IEEE Wirel. Commun. Lett. 2022, 11, 53–57. [Google Scholar] [CrossRef]
- Bai, X.; Kong, F.; Sun, Y.; Wang, G.; Qian, J.; Li, X.; Cao, A.; He, C.; Liang, X.; Jin, R.; et al. High-Efficiency Transmissive Programmable Metasurface for Multimode OAM Generation. Adv. Opt. Mater. 2020, 8, 2000570. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X.; Mu, X.; Hou, T.; Xu, J.; Di Renzo, M.; Al-Dhahir, N. Reconfigurable Intelligent Surfaces: Principles and Opportunities. IEEE Commun. Surv. Tutor. 2021, 23, 1546–1577. [Google Scholar] [CrossRef]
- Pan, C.; Zhou, G.; Zhi, K.; Hong, S.; Wu, T.; Pan, Y.; Ren, H.; Di Renzo, M.; Swindlehurst, A.L.; Zhang, R.; et al. An Overview of Signal Processing Techniques for RIS/IRS-aided Wireless Systems. IEEE J. Sel. Top. Signal Process. 2022, 16, 883–917. [Google Scholar] [CrossRef]
- Huang, C.; Zappone, A.; Alexandropoulos, G.C.; Debbah, M.; Yuen, C. Reconfigurable intelligent surfaces for energy efficiency in wireless communication. IEEE Trans. Wirel. Commun. 2019, 18, 4157–4170. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Chen, M.Z.; Tang, W.; Dai, J.Y.; Miao, L.; Zhou, X.Y.; Jin, S.; Cheng, Q.; Cui, T.J. A wireless communication scheme based on space- and frequency-division multiplexing using digital metasurfaces. Nat. Electron. 2021, 4, 218–227. [Google Scholar] [CrossRef]
- Dardari, D. Communicating with Large Intelligent Surfaces: Fundamental Limits and Models. IEEE J. Sel. Areas Commun. 2020, 38, 2526–2537. [Google Scholar] [CrossRef]
- di Renzo, M.; Zappone, A.; Debbah, M.; Alouini, M.-S.; Yuen, C.; de Rosny, J.; Tretyakov, S. Smart Radio Environments Empowered by Reconfigurable Intelligent Surfaces: How It Works, State of Research, and The Road Ahead. IEEE J. Sel. Areas Commun. 2020, 38, 2450–2525. [Google Scholar] [CrossRef]
- Rocca, P.; Oliveri, G.; Mailloux, R.J.; Massa, A. Unconventional Phased Array Architectures and Design Methodologies—A Review. Proc. IEEE 2016, 104, 544–560. [Google Scholar] [CrossRef]
- Dong, S.; Li, S.; Ling, X.; Hu, G.; Li, Y.; Zhu, H.; Zhou, L.; Sun, S. Broadband spinunlocked metasurfaces for bifunctional wavefront manipulations. Appl. Phys. Lett. 2022, 120, 181702. [Google Scholar] [CrossRef]
- Lee, D.; So, S.; Hu, G.; Kim, M.; Badloe, T.; Cho, H.; Kim, J.; Kim, H.; Qiu, C.-W.; Rho, J. Hyperbolic metamaterials: Fusing artificial structures to natural 2D materials. eLight 2022, 2, 1. [Google Scholar] [CrossRef]
- Qiu, Y.; Tang, S.; Cai, T.; Xu, H.; Ding, F. Fundamentals and applications of spin-decoupled Pancharatnam-Berry metasurfaces. Front. Optoelectron. 2021, 14, 134–147. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, J.; Wu, L.; Gou, Y.; Ma, H.; Cheng, Q.; Cui, T. High efficiency polarization-encoded holograms with ultrathin bilayer spin-decoupled information metasurfaces. Adv. Opt. Mater. 2021, 9, 2001609. [Google Scholar] [CrossRef]
- Ji, R.; Xie, X.; Guo, X.; Zhao, Y.; Jin, C.; Song, K.; Wang, S.; Yin, J.; Liu, Y.; Jiang, C.; et al. Chirality-assisted Aharonov-Anandan geometric-phase metasurfaces for spin-decoupled phase modulation. ACS Photonics 2021, 8, 1847–1855. [Google Scholar] [CrossRef]
- Jiang, Z.H.; Kang, L.; Yue, T.; Hong, W.; Werner, D.H. Wideband Transmit Arrays Based on Anisotropic Impedance Surfaces for Circularly Polarized Single-Feed Multibeam Generation in the Q-Band. IEEE Trans. Antennas Propag. 2020, 68, 217–229. [Google Scholar] [CrossRef]
- Kitayama, D.; Hama, Y.; Goto, K.; Miyachi, K.; Motegi, T.; Kagaya, O. Transparent dynamic metasurface for a visually unaffected reconfigurable intelligent surface: Controlling transmission/reflection and making a window into an RF lens. Opt. Express 2021, 29, 29292–29307. [Google Scholar] [CrossRef]
- Yang, H.; Yang, F.; Cao, X.; Xu, S.; Gao, J.; Chen, X.; Li, M.; Li, T. A 1600-Element Dual-Frequency Electronically Reconfigurable Reflectarray at X/Ku-Band. IEEE Trans. Antennas Propag. 2017, 65, 3024–3032. [Google Scholar] [CrossRef]
- Kamoda, H.; Iwasaki, T.; Tsumochi, J.; Kuki, T. 60-GHz electrically reconfigurable reflectarray using p-i-n diode. In Proceedings of the 2009 IEEE MTT-S International Microwave Symposium Digest, Boston, MA, USA, 7–12 June 2009; pp. 1177–1180. [Google Scholar] [CrossRef]
- Zainud-Deen, S.H.; Gaber, S.M.; Awadalla, K.H. Beam steering reflectarray using varactor diodes. In Proceedings of the 2012 Japan-Egypt Conference on Electronics, Communications and Computers, Alexandria, Egypt, 6–9 March 2012; pp. 178–181. [Google Scholar] [CrossRef]
- Rodrigo, D.; Jofre, L.; Perruisseau-Carrier, J. Unit Cell for Frequency-Tunable Beamscanning Reflectarrays. IEEE Trans. Antennas Propag. 2013, 61, 5992–5999. [Google Scholar] [CrossRef]
- Fan, Z.; Qian, C.; Jia, Y.; Wang, Z.; Ding, Y.; Wang, D.; Tian, L.; Li, E.; Cai, T.; Zheng, B.; et al. Homeostatic neuro-metasurfaces for dynamic wireless channel management. Sci. Adv. 2022, 8, 27. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Liu, T.; Zhou, Y.; Zheng, X.; Sun, S.; He, Q.; Zhou, L. High-efficiency metadevices for bifunctional generations of vectorial optical fields. Nanophotonics 2021, 10, 685–695. [Google Scholar] [CrossRef]
- Yang, H.; Cao, X.; Yang, F.; Gao, J.; Xu, S.; Li, M.; Chen, X.; Zhao, Y.; Zheng, Y.; Li, S. A programmable metasurface with dynamic polarization, scattering and focusing control. Sci. Rep. 2016, 6, 35692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, J.; Cao, X.; Gao, J. Design of reconfigurable ultra-wideband polarization conversion metasurface. In Proceedings of the 2019 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Guangzhou, China, 19–22 May 2019; pp. 1–3. [Google Scholar] [CrossRef]
- Diaby, F.; Clemente, A.; Di Palma, L.; Dussopt, L.; Pham, K.; Fourn, E.; Sauleau, R. Design of a 2-bit unit-cell for electronically reconfigurable transmitarrays at Ka-band. In Proceedings of the 2017 European Radar Conference (EURAD), Nuremberg, Germany, 11–13 October 2017; pp. 473–476. [Google Scholar] [CrossRef]
- Rotshild, D.; Abramovich, A. Realization and validation of continuous tunable metasurface for high resolution beam steering reflector at K-band frequency. Int. J. RF Microw. Comput. Aided Eng. 2021, 31, e22559. [Google Scholar] [CrossRef]
- Rotshild, D.; Rahamim, E.; Abramovich, A. Innovative Reconfigurable Metasurface 2-D Beam-Steerable Reflector for 5G Wireless Communication. Electronics 2020, 9, 1191. [Google Scholar] [CrossRef]
- MACOM.MAVR-011020-1411, SolderableGaAs ConstantGammaFlip-ChipVaractor Diode. Available online: https://cdn.macom.com/datasheets/MAVR-011020-1141.pdf (accessed on 11 October 2022).
- Spice Model MAVR_011020-14110 rev B. Available online: https://cdn.macom.com/files/MAVR-011020-14110%20SPICE%20Model%20rev%20B.pdf (accessed on 11 October 2022).
- Sievenpiper, D.F. High-Impedance Electromagnetic Surfaces. Ph.D. Thesis, University of California, Los Angeles, CA, USA, 1999. [Google Scholar]
Parameters | Value | Parameters | Value |
---|---|---|---|
P | 4 mm | t | 0.035 mm |
W | 1 mm | h1 | 0.508 mm |
L | 2.2 mm | h2 | 0.2 mm |
g | 0.8 mm | h3 | 1.016 mm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, C.; Yang, C.; Zhang, C.; Feng, J.; Xu, C.; Li, H. Wideband Lorenz Resonance Reconfigurable Metasurface for 5G+ Communications. Electronics 2022, 11, 4105. https://doi.org/10.3390/electronics11244105
Yang C, Yang C, Zhang C, Feng J, Xu C, Li H. Wideband Lorenz Resonance Reconfigurable Metasurface for 5G+ Communications. Electronics. 2022; 11(24):4105. https://doi.org/10.3390/electronics11244105
Chicago/Turabian StyleYang, Chun, Chuanchuan Yang, Cheng Zhang, Jiqiang Feng, Chen Xu, and Hongbin Li. 2022. "Wideband Lorenz Resonance Reconfigurable Metasurface for 5G+ Communications" Electronics 11, no. 24: 4105. https://doi.org/10.3390/electronics11244105
APA StyleYang, C., Yang, C., Zhang, C., Feng, J., Xu, C., & Li, H. (2022). Wideband Lorenz Resonance Reconfigurable Metasurface for 5G+ Communications. Electronics, 11(24), 4105. https://doi.org/10.3390/electronics11244105