Effectiveness of Decentralized Federated Learning Algorithms in Healthcare: A Case Study on Cancer Classification
Abstract
:1. Introduction
- Data diversity: heterogeneous data from multiple clients;
- Real-time learning: models are continuously updated with data from clients;
- Data security: the data are not sent to the central server and are kept only by the clients;
- Hardware efficiency: FL does not need a complex central server to analyze.
1.1. Applications of FL
1.2. Our Approach
1.3. Research Focus and Contributions
- We applied the FedAVg and FedProx algorithms to different model architectures (MobileNet-V3, Xception-V3 and ResNet201) and presented the result of extensive experiments on three major types of cancer.
- We used non-IID datasets to compare and evaluate the performance of FedAvg and FedProx algorithms.
- We used Bayesian optimization to tune the hyperparameters of both local and global models to achieve better convergence.
- We conducted numerous experiments using various computer vision tasks having different types of cancer.
2. Review of Literature
IID vs. Non-IID Datasets
3. Proposed Methodology
3.1. Local (Client) Models
LocalModelUpdate(N,l, Wg(t))://Run at each client ‘N’ Wl(t−1) ← Wg(t)//Receive Wl(t−1) from the central server For each epoch 1 to E For each batch ‘e’ of images Take a batch of images ‘e’ from the local dataset; Tune the hyperparameters using the Bayesian optimization search Train the CNN model, find the weight updates as ΔWl (t−1) Calculate the accuracy (LMUacc) Find the loss function (Fl) using the federated learning algorithms (FedAvg and FedProx) Update the weights, Wl (t) ← Wl (t−1) ± ΔWl (t−1) Copy ω← Wl (t) (for FedProx algorithm) If LMUacc is greater than the accuracy before training, then Send the updated weights, Wl (t), to the server |
3.2. Global (Server) Model
Initialize global model: Wg(0) t = 0 Repeat until performance is satisfied { For each local model ‘l’ in N Wl (t+1)← LocalModelUpdate(N,l, Wg(t)) Tune the hyperparameters using the Bayesian optimization search Evaluate the global model using test images Update the weights (Wg (t)), if needed Wg (t+1)← Wg (t) ± (1/N) summation (Wl (t+1)) Send the updated weights Wg (t+1) to the clients t = t + 1 } |
3.3. Federated Learning Schemes
For each client n ∈ N, For epochs in E Find the minimal loss function Fl using the learning rate (η) Wl (t) ← Wl (t−1)+ ΔWl (t−1)//Update Wl (t) using Stochastic Gradient Decent Send the updated Wl (t) to the aggregation server |
For each client n ∈ N, For epochs in E Compute the loss function Fl using the objective function as, Fl(ω) + (μ/2)(||ω−Wl (t−1)||)2 Wl (t) ← Wl (t−1)+ ΔWl (t−1) Send the updated Wl (t) to the aggregation server |
4. Experimental Settings
4.1. Dataset Description
4.2. Models
4.3. Hyperparameter Tuning
5. Experimental Results
5.1. Performance Evaluation
5.2. Findings and Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sheller, M.J.; Edwards, B.; Reina, G.A.; Martin, J.; Pati, S.; Kotrotsou, A.; Milchenko, M.; Xu, W.; Marcus, D.; Colen, R.R. Federated learning in medicine: Facilitating multi-institutional collaborations without sharing patient data. Sci. Rep. 2020, 10, 12598. [Google Scholar] [CrossRef] [PubMed]
- Khan, L.U.; Saad, W.; Han, Z.; Hossain, E.; Hong, C.S. Federated learning for internet of things: Recent advances, taxonomy, and open challenges. IEEE Commun. Surv. Tutor. 2021, 23, 1759–1799. [Google Scholar] [CrossRef]
- Zhu, Y.; Shen, B.; Pei, X.; Liu, H.; Li, G. CT, MRI, and PET imaging features in cervical cancer staging and lymph node metastasis. Am. J. Transl. Res. 2021, 13, 10536. [Google Scholar] [PubMed]
- Nguyen, D.C.; Pham, Q.-V.; Pathirana, P.N.; Ding, M.; Seneviratne, A.; Lin, Z.; Dobre, O.; Hwang, W.-J. Federated learning for smart healthcare: A survey. ACM Comput. Surv. (CSUR) 2022, 55, 1–37. [Google Scholar] [CrossRef]
- Shaheen, M.; Farooq, M.S.; Umer, T.; Kim, B.-S. Applications of federated learning; Taxonomy, challenges, and research trends. Electronics 2022, 11, 670. [Google Scholar] [CrossRef]
- He, C.; Annavaram, M.; Avestimehr, S. Group knowledge transfer: Federated learning of large cnns at the edge. Adv. Neural Inf. Process. Syst. 2020, 33, 14068–14080. [Google Scholar]
- Nguyen, D.C.; Ding, M.; Pathirana, P.N.; Seneviratne, A.; Li, J.; Poor, H.V. Federated learning for internet of things: A comprehensive survey. IEEE Commun. Surv. Tutor. 2021, 23, 1622–1658. [Google Scholar] [CrossRef]
- Li, T.; Sahu, A.K.; Zaheer, M.; Sanjabi, M.; Talwalkar, A.; Smith, V. Federated optimization in heterogeneous networks. Proc. Mach. Learn. Syst. 2020, 2, 429–450. [Google Scholar]
- Jeong, E.; Oh, S.; Kim, H.; Park, J.; Bennis, M.; Kim, S.-L. Communication-efficient on-device machine learning: Federated distillation and augmentation under non-iid private data. arXiv 2018, arXiv:1811.11479. [Google Scholar]
- Shen, T.; Zhang, J.; Jia, X.; Zhang, F.; Huang, G.; Zhou, P.; Kuang, K.; Wu, F.; Wu, C. Federated mutual learning. arXiv 2020, arXiv:2006.16765. [Google Scholar]
- Liu, L.; Zhang, J.; Song, S.; Letaief, K.B. Client-edge-cloud hierarchical federated learning. In Proceedings of the ICC 2020—2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 7–11 June 2020; pp. 1–6. [Google Scholar]
- Li, T.; Sanjabi, M.; Beirami, A.; Smith, V. Fair resource allocation in federated learning. arXiv 2019, arXiv:1905.10497. [Google Scholar]
- Mohammadi, R.; Shokatian, I.; Salehi, M.; Arabi, H.; Shiri, I.; Zaidi, H. Deep learning-based auto-segmentation of organs at risk in high-dose rate brachytherapy of cervical cancer. Radiother. Oncol. 2021, 159, 231–240. [Google Scholar] [CrossRef]
- Zhang, T.; Gao, L.; He, C.; Zhang, M.; Krishnamachari, B.; Avestimehr, A.S. Federated Learning for the Internet of Things: Applications, Challenges, and Opportunities. IEEE Internet Things Mag. 2022, 5, 24–29. [Google Scholar] [CrossRef]
- Zhang, L.; Luo, Y.; Bai, Y.; Du, B.; Duan, L.-Y. Federated learning for non-iid data via unified feature learning and optimization objective alignment. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021; pp. 4420–4428. [Google Scholar]
- Holly, S.; Hiessl, T.; Lakani, S.R.; Schall, D.; Heitzinger, C.; Kemnitz, J. Evaluation of hyperparameter-optimization approaches in an industrial federated learning system. In Data Science–Analytics and Applications; Springer: Berlin/Heidelberg, Germany, 2022; pp. 6–13. [Google Scholar]
- Guo, P.; Yang, D.; Hatamizadeh, A.; Xu, A.; Xu, Z.; Li, W.; Zhao, C.; Xu, D.; Harmon, S.; Turkbey, E. Auto-FedRL: Federated Hyperparameter Optimization for Multi-institutional Medical Image Segmentation. arXiv 2022, arXiv:2203.06338. [Google Scholar]
- Zhu, H.; Xu, J.; Liu, S.; Jin, Y. Federated learning on non-IID data: A survey. Neurocomputing 2021, 465, 371–390. [Google Scholar] [CrossRef]
- Kumar, R.; Wang, W.; Yuan, C.; Kumar, J.; Qing, H.; Yang, T.; Khan, A.A. Blockchain based privacy-preserved federated learning for medical images: A case study of COVID-19 CT scans. arXiv 2021, arXiv:2104.10903. [Google Scholar]
- Dou, Q.; So, T.Y.; Jiang, M.; Liu, Q.; Vardhanabhuti, V.; Kaissis, G.; Li, Z.; Si, W.; Lee, H.H.; Yu, K. Federated deep learning for detecting COVID-19 lung abnormalities in CT: A privacy-preserving multinational validation study. NPJ Digit. Med. 2021, 4, 1–11. [Google Scholar] [CrossRef]
- Kumar, R.; Khan, A.A.; Kumar, J.; Golilarz, N.A.; Zhang, S.; Ting, Y.; Zheng, C.; Wang, W. Blockchain-federated-learning and deep learning models for covid-19 detection using ct imaging. IEEE Sens. J. 2021, 21, 16301–16314. [Google Scholar] [CrossRef]
- Yang, Q.; Zhang, J.; Hao, W.; Spell, G.P.; Carin, L. Flop: Federated learning on medical datasets using partial networks. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, Singapore, 14–18 August 2021; pp. 3845–3853. [Google Scholar]
- Salam, M.A.; Taha, S.; Ramadan, M. COVID-19 detection using federated machine learning. PLoS ONE 2021, 16, e0252573. [Google Scholar]
- Nguyen, D.C.; Ding, M.; Pathirana, P.N.; Seneviratne, A.; Zomaya, A.Y. Federated learning for COVID-19 detection with generative adversarial networks in edge cloud computing. IEEE Internet Things J. 2022, 9, 10257–10271. [Google Scholar] [CrossRef]
- Beguier, C.; Du Terrail, J.O.; Meah, I.; Andreux, M.; Tramel, E.W. Differentially private federated learning for cancer prediction. arXiv 2021, arXiv:2101.02997. [Google Scholar]
- Choudhury, O.; Gkoulalas-Divanis, A.; Salonidis, T.; Sylla, I.; Park, Y.; Hsu, G.; Das, A. Differential privacy-enabled federated learning for sensitive health data. arXiv 2019, arXiv:1910.02578. [Google Scholar]
- Hansen, C.R.; Price, G.; Field, M.; Sarup, N.; Zukauskaite, R.; Johansen, J.; Eriksen, J.G.; Aly, F.; McPartlin, A.; Holloway, L. Larynx cancer survival model developed through open-source federated learning. Radiother. Oncol. 2022, 176, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Brisimi, T.S.; Chen, R.; Mela, T.; Olshevsky, A.; Paschalidis, I.C.; Shi, W. Federated learning of predictive models from federated electronic health records. Int. J. Med. Inform. 2018, 112, 59–67. [Google Scholar] [CrossRef]
- Kumar, Y.; Singla, R. Federated learning systems for healthcare: Perspective and recent progress. In Federated Learning Systems; Springer: Berlin/Heidelberg, Germany, 2021; pp. 141–156. [Google Scholar]
- Long, G.; Shen, T.; Tan, Y.; Gerrard, L.; Clarke, A.; Jiang, J. Federated learning for privacy-preserving open innovation future on digital health. In Humanity Driven AI; Springer: Berlin/Heidelberg, Germany, 2022; pp. 113–133. [Google Scholar]
- Antunes, R.S.; Da Costa, C.A.; Küderle, A.; Yari, I.A.; Eskofier, B. Federated Learning for Healthcare: Systematic Review and Architecture Proposal. ACM Trans. Intell. Syst. Technol. (TIST) 2022, 13, 1–23. [Google Scholar] [CrossRef]
- Rieke, N.; Hancox, J.; Li, W.; Milletari, F.; Roth, H.R.; Albarqouni, S.; Bakas, S.; Galtier, M.N.; Landman, B.A.; Maier-Hein, K. The future of digital health with federated learning. NPJ Digit. Med. 2020, 3, 119. [Google Scholar] [CrossRef]
- Yuan, X.-T.; Li, P. On Convergence of FedProx: Local Dissimilarity Invariant Bounds, Non-smoothness and Beyond. arXiv 2022, arXiv:2206.05187. [Google Scholar]
- Long, G.; Xie, M.; Shen, T.; Zhou, T.; Wang, X.; Jiang, J. Multi-center federated learning: Clients clustering for better personalization. World Wide Web 2022, 1–20. [Google Scholar] [CrossRef]
- Ghosh, A.; Chung, J.; Yin, D.; Ramchandran, K. An efficient framework for clustered federated learning. Adv. Neural Inf. Process. Syst. 2020, 33, 19586–19597. [Google Scholar] [CrossRef]
- Tan, Y.; Long, G.; Liu, L.; Zhou, T.; Lu, Q.; Jiang, J.; Zhang, C. Fedproto: Federated prototype learning across heterogeneous clients. In Proceedings of the AAAI Conference on Artificial Intelligence, Pomona, CA, USA, 24–28 October 2022; p. 3. [Google Scholar]
- Chen, Z.; Yang, C.; Zhu, M.; Peng, Z.; Yuan, Y. Personalized retrogress-resilient federated learning towards imbalanced medical data. IEEE Trans. Med. Imaging 2022, 41, 3663–3674. [Google Scholar] [CrossRef]
- Zhu, Z.; Hong, J.; Zhou, J. Data-free knowledge distillation for heterogeneous federated learning. Proc. Mach. Learn. Res. 2021, 139, 12878–12889. [Google Scholar]
- Zhang, L.; Shen, L.; Ding, L.; Tao, D.; Duan, L.-Y. Fine-tuning global model via data-free knowledge distillation for non-iid federated learning. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 10174–10183. [Google Scholar]
- Tan, Y.; Long, G.; Ma, J.; Liu, L.; Zhou, T.; Jiang, J. Federated learning from pre-trained models: A contrastive learning approach. arXiv 2022, arXiv:2209.10083. [Google Scholar]
- Chen, H.-Y.; Tu, C.-H.; Li, Z.; Shen, H.-W.; Chao, W.-L. On pre-training for federated learning. arXiv 2022, arXiv:2206.11488. [Google Scholar]
- Aquilante, J.; Jicha, A. Heterogeneity Aware Federated Learning. Bachelor’s Thesis, Worcester Polytechnic Institute, Worcester, MA, USA, 2021. [Google Scholar]
- Subramanian, M.; Shanmugavadivel, K.; Nandhini, P. On fine-tuning deep learning models using transfer learning and hyper-parameters optimization for disease identification in maize leaves. Neural Comput. Appl. 2022, 34, 13951–13968. [Google Scholar] [CrossRef]
- Subramanian, M.; Prasad, L.V.N.; Janakiramiah, B.; Babu, A.M.; Sathishkumar, V.E. Hyperparameter optimization for transfer learning of VGG16 for disease identification in corn leaves using Bayesian optimization. Big Data 2022, 10, 215–229. [Google Scholar] [CrossRef]
- Ng, D.; Lan, X.; Yao, M.M.-S.; Chan, W.P.; Feng, M. Federated learning: A collaborative effort to achieve better medical imaging models for individual sites that have small labelled datasets. Quant. Imaging Med. Surg. 2021, 11, 852. [Google Scholar] [CrossRef]
Notation | Descriptions |
---|---|
Wg(t) | Global weight parameter at time ‘t’ |
Wl(t − 1) | Local weight parameters received by a client at time ‘t − 1′ |
Wl(t),ω | Local weight parameters updated by a client at time ‘t’ |
N | Number of clients |
‘l’ | A local model |
E | Number of epochs |
Fl | Loss function |
μ | Proximal term |
Cancer Types | Classes | Number of Training Images | Number of Testing Images |
---|---|---|---|
Cervical | Metaplasia | 2000 | 500 |
Dyskeratotic | 2000 | 500 | |
Koilocytotic | 2000 | 500 | |
Parabasal | 2000 | 500 | |
Superficial–intermediate | 2000 | 500 | |
Lung | Lung benign tissue | 2000 | 500 |
Lung adenocarcinoma | 2000 | 500 | |
Lung squamous cell carcinoma | 2000 | 500 | |
Colon | Colon adeno carcinoma | 2000 | 500 |
Colon benign tissue | 2000 | 500 |
Parameter | Search Space |
---|---|
Optimizer | Adam, RMSProp, SGD |
Learning rate | 1 × 10−3, 1 × 10−4, 1 × 10−5, 1 × 10−6 |
Activation function | Relu, Elu, and Tanh |
Number of neurons in customized layers | 64, 128, 56, 512, 1024 |
Number of hidden layers | 2, 3, 4, 5 |
Batch Size | 32, 64, 128 |
Epochs | 10, 20, 30, 40 |
Communication rounds | 100, 150, 200, 250 |
Parameters | Optimal Values |
---|---|
Optimizer | SGD |
Learning rate (client and server) | 1 × 10−3 (client) and 1 × 10−4 (server) |
Activation function (client) | Relu |
Number of neurons in customized layers (client) | 128 |
Number of hidden layers (client) | 4 |
Batch Size (client) | 128 |
Epochs (client) | 10 |
Communication rounds (between client and server) | 150 |
Communication Rounds | FedAvg | FedProx | ||||
---|---|---|---|---|---|---|
Precision | Recall | F1 Score | Precision | Recall | F1 Score | |
250 | 93.79 | 88.51 | 91.08 | 91.78 | 90.72 | 91.25 |
95.14 | 84.99 | 89.78 | 91.96 | 88.16 | 90.02 | |
78.33 | 80.65 | 79.47 | 79.06 | 86.53 | 82.63 | |
78.68 | 79.2 | 78.94 | 80.54 | 76.6 | 78.52 | |
74.55 | 81.01 | 77.64 | 75.65 | 77.27 | 76.46 | |
46.49 | 80.37 | 58.9 | 49.85 | 74.24 | 59.65 | |
89.55 | 86.78 | 88.14 | 85.16 | 85.71 | 85.44 | |
83.18 | 87.25 | 85.17 | 82.95 | 87.59 | 85.21 | |
82.73 | 66.28 | 73.59 | 82.14 | 70.12 | 75.66 | |
75.67 | 71.99 | 73.78 | 78.37 | 68.44 | 73.07 | |
200 | 93.32 | 83.91 | 88.36 | 91.63 | 85.28 | 88.34 |
95.55 | 86.45 | 90.77 | 94.22 | 86.79 | 90.35 | |
79.63 | 78.41 | 79.02 | 82.48 | 79.69 | 81.06 | |
84.18 | 80.97 | 82.54 | 83.48 | 82.93 | 83.21 | |
70.44 | 79.19 | 74.56 | 72.32 | 80.52 | 76.2 | |
58.38 | 80.3 | 67.61 | 60.61 | 81.18 | 69.4 | |
90 | 85.71 | 87.8 | 86.74 | 83.65 | 85.17 | |
84.35 | 85.75 | 85.04 | 84.69 | 83.72 | 84.2 | |
76.4 | 81.14 | 78.7 | 76.94 | 79.65 | 78.27 | |
76.16 | 70.98 | 73.47 | 76.14 | 70.42 | 73.17 | |
150 | 93.79 | 90.34 | 92.04 | 94.05 | 91.22 | 92.61 |
95.55 | 88.39 | 91.83 | 95.38 | 89.12 | 92.14 | |
80.42 | 80.42 | 80.42 | 83.42 | 82.11 | 82.76 | |
81.1 | 75.61 | 78.26 | 83.04 | 78.15 | 80.52 | |
79.69 | 82.67 | 81.15 | 80.26 | 82.8 | 81.51 | |
57.3 | 81.85 | 67.41 | 62.59 | 87.76 | 73.07 | |
89.32 | 86 | 87.63 | 90.25 | 87.67 | 88.94 | |
87.85 | 85.84 | 86.84 | 88.03 | 87.21 | 87.62 | |
74.45 | 71.66 | 73.03 | 77.33 | 72.24 | 74.7 | |
73.24 | 74.5 | 73.87 | 74.57 | 74.57 | 74.57 | |
100 | 94.27 | 87.2 | 90.6 | 95.9 | 87.28 | 91.39 |
96.15 | 84.97 | 90.22 | 95.02 | 85.33 | 89.92 | |
76.76 | 84 | 80.22 | 75.96 | 84.62 | 80.05 | |
82.86 | 73.35 | 77.81 | 85.17 | 74.31 | 79.37 | |
83.29 | 77.33 | 80.2 | 84.1 | 78.28 | 81.09 | |
49.73 | 86.38 | 63.12 | 51.37 | 87.79 | 64.82 | |
91.82 | 86.88 | 89.28 | 91.89 | 87.74 | 89.77 | |
86.92 | 82.3 | 84.55 | 87.04 | 83.19 | 85.07 | |
74.45 | 76.69 | 75.56 | 74.5 | 75.44 | 74.97 | |
70.56 | 77.13 | 73.7 | 71.43 | 78.46 | 74.78 |
Communication Rounds | FedAvg | FedProx |
---|---|---|
100 | 81.45% | 82.05% |
150 | 81.91% | 83.313% |
200 | 81.548% | 81.667% |
250 | 80.57% | 80.73% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Subramanian, M.; Rajasekar, V.; V. E., S.; Shanmugavadivel, K.; Nandhini, P.S. Effectiveness of Decentralized Federated Learning Algorithms in Healthcare: A Case Study on Cancer Classification. Electronics 2022, 11, 4117. https://doi.org/10.3390/electronics11244117
Subramanian M, Rajasekar V, V. E. S, Shanmugavadivel K, Nandhini PS. Effectiveness of Decentralized Federated Learning Algorithms in Healthcare: A Case Study on Cancer Classification. Electronics. 2022; 11(24):4117. https://doi.org/10.3390/electronics11244117
Chicago/Turabian StyleSubramanian, Malliga, Vani Rajasekar, Sathishkumar V. E., Kogilavani Shanmugavadivel, and P. S. Nandhini. 2022. "Effectiveness of Decentralized Federated Learning Algorithms in Healthcare: A Case Study on Cancer Classification" Electronics 11, no. 24: 4117. https://doi.org/10.3390/electronics11244117
APA StyleSubramanian, M., Rajasekar, V., V. E., S., Shanmugavadivel, K., & Nandhini, P. S. (2022). Effectiveness of Decentralized Federated Learning Algorithms in Healthcare: A Case Study on Cancer Classification. Electronics, 11(24), 4117. https://doi.org/10.3390/electronics11244117