High-Speed Object Recognition Based on a Neuromorphic System
Abstract
:1. Introduction
- The frame-based camera suffers from motion blur, which decreases the accuracy of recognition;
- There is high power consumption due to high data throughput and a huge number of multiply-add operations;
- The computation of such a full matrix deep neural network takes a large amount of time, which causes an unacceptable latency for high-speed recognition tasks.
- We present a high-speed object recognition system built on DVS and SpiNNaker that has a high level of adaptability to varied object speeds, high detection rate (more than 99%) and low latency (within ).
- On the DVS-based dataset, there is no degradation in accuracy for the SNN on SpiNNaker through comparative experiments, and the SNN running on SpiNNaker reduces the number of FLOPs by 96.3% compared to ANNs of the same scale.
- It is easy for the system to transfer to neuromorphic simulators without retraining.
2. Related Work
3. Methodology
3.1. Events Aggregation Algorithm
3.2. Spiking Neural Network Models
3.3. Deployment on SpiNNaker
4. Experiments and Analysis
4.1. Implementation of System
4.2. Data Acquisition and Evaluation
4.3. Results Analysis
4.3.1. Performance Evaluation
4.3.2. Comparisons and Analysis
4.3.3. Portability Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Namiki, S.; Yokoyama, K.; Yachida, S.; Shibata, T.; Miyano, H.; Ishikawa, M. Online Object Recognition Using CNN-Based Algorithm on High-Speed Camera Imaging: Framework for Fast and Robust High-Speed Camera Object Recognition Based on Population Data Cleansing and Data Ensemble. In Proceedings of the 2020 25th International Conference on Pattern Recognition (ICPR), Milan, Italy, 10–15 January 2021; pp. 2025–2032. [Google Scholar] [CrossRef]
- Luo, W.; Ning, B. High-Dynamic Dance Motion Recognition Method Based on Video Visual Analysis. Sci. Program. 2022, 2022, 6724892. [Google Scholar] [CrossRef]
- Cui, Z.; Zheng, T. Badminton Recognition and Tracking System. Int. J. Pattern Recognit. Artif. Intell. 2021, 35, 2150039. [Google Scholar] [CrossRef]
- Davies, M.; Srinivasa, N.; Lin, T.-H.; Chinya, G.; Cao, Y.; Choday, S.H.; Dimou, G.; Joshi, P.; Imam, N.; Jain, S.; et al. Loihi: A Neuromorphic Manycore Processor with On-Chip Learning. IEEE Micro 2018, 38, 82–99. [Google Scholar] [CrossRef]
- Merolla, P.A.; Arthur, J.V.; Alvarez-Icaza, R.; Cassidy, A.S.; Sawada, J.; Akopyan, F.; Jackson, B.L.; Imam, N.; Guo, C.; Nakamura, Y.; et al. A Million Spiking-Neuron Integrated Circuit with a Scalable Communication Network and Interface. Science 2014, 345, 668–673. [Google Scholar] [CrossRef]
- Pei, J.; Deng, L.; Song, S.; Zhao, M.; Zhang, Y.; Wu, S.; Wang, G.; Zou, Z.; Wu, Z.; He, W.; et al. Towards Artificial General Intelligence with Hybrid Tianjic Chip Architecture. Nature 2019, 572, 106–111. [Google Scholar] [CrossRef]
- Furber, S.B.; Lester, D.R.; Plana, L.A.; Garside, J.D.; Painkras, E.; Temple, S.; Brown, A.D. Overview of the SpiNNaker System Architecture. IEEE Trans. Comput. 2013, 62, 2454–2467. [Google Scholar] [CrossRef] [Green Version]
- Furber, S.B.; Galluppi, F.; Temple, S.; Plana, L.A. The SpiNNaker Project. Proc. IEEE 2014, 102, 652–665. [Google Scholar] [CrossRef]
- Akopyan, F.; Sawada, J.; Cassidy, A.; Alvarez-Icaza, R.; Arthur, J.; Merolla, P.; Imam, N.; Nakamura, Y.; Datta, P.; Nam, G.-J.; et al. TrueNorth: Design and Tool Flow of a 65 MW 1 Million Neuron Programmable Neurosynaptic Chip. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2015, 34, 1537–1557. [Google Scholar] [CrossRef]
- Lichtsteiner, P.; Posch, C.; Delbruck, T. A 128× 128 120 dB 15 μs Latency Asynchronous Temporal Contrast Vision Sensor. IEEE J. Solid-State Circuits 2008, 43, 566–576. [Google Scholar] [CrossRef]
- Paredes-Valles, F.; de Croon, G.C.H.E. Back to Event Basics: Self-Supervised Learning of Image Reconstruction for Event Cameras via Photometric Constancy. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 3445–3454. [Google Scholar] [CrossRef]
- Weng, W.; Zhang, Y.; Xiong, Z. Event-Based Video Reconstruction Using Transformer. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021; pp. 2543–2552. [Google Scholar] [CrossRef]
- Zhu, L.; Li, J.; Wang, X.; Huang, T.; Tian, Y. NeuSpike-Net: High Speed Video Reconstruction via Bio-Inspired Neuromorphic Cameras. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021; pp. 2380–2389. [Google Scholar] [CrossRef]
- Tulyakov, S.; Gehrig, D.; Georgoulis, S.; Erbach, J.; Gehrig, M.; Li, Y.; Scaramuzza, D. Time Lens: Event-Based Video Frame Interpolation. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 16150–16159. [Google Scholar] [CrossRef]
- Scheerlinck, C.; Rebecq, H.; Gehrig, D.; Barnes, N.; Mahony, R.E.; Scaramuzza, D. Fast Image Reconstruction with an Event Camera. In Proceedings of the 2020 IEEE Winter Conference on Applications of Computer Vision (WACV), Snowmass, CO, USA, 1–5 March 2020; pp. 156–163. [Google Scholar] [CrossRef]
- Perot, E.; de Tournemire, P.; Nitti, D.; Masci, J.; Sironi, A. Learning to Detect Objects with a 1 Megapixel Event Camera. In Advances in Neural Information Processing Systems; Curran Associates, Inc.: Red Hook, NY, USA, 2020; Volume 33, pp. 16639–16652. [Google Scholar]
- Xu, L.; Xu, W.; Golyanik, V.; Habermann, M.; Fang, L.; Theobalt, C. EventCap: Monocular 3D Capture of High-Speed Human Motions Using an Event Camera. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 4967–4977. [Google Scholar] [CrossRef]
- Li, J.; Li, J.; Zhu, L.; Xiang, X.; Huang, T.; Tian, Y. Asynchronous Spatio-Temporal Memory Network for Continuous Event-Based Object Detection. IEEE Trans. Image Process. 2022, 31, 2975–2987. [Google Scholar] [CrossRef]
- Liu, Q.; Ruan, H.; Xing, D.; Tang, H.; Pan, G. Effective AER Object Classification Using Segmented Probability-Maximization Learning in Spiking Neural Networks. In Proceedings of the AAAI conference on artificial intelligence (AAAI), New York, NY, USA, 7–12 February 2020; Volume 34, pp. 1308–1315. [Google Scholar]
- Amir, A.; Taba, B.; Berg, D.; Melano, T.; McKinstry, J.; Di Nolfo, C.; Nayak, T.; Andreopoulos, A.; Garreau, G.; Mendoza, M.; et al. A Low Power, Fully Event-Based Gesture Recognition System. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 7388–7397. [Google Scholar] [CrossRef]
- Liu, Q.; Xing, D.; Tang, H.; Ma, D.; Pan, G. Event-Based Action Recognition Using Motion Information and Spiking Neural Networks. In Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, International Joint Conferences on Artificial Intelligence Organization, Montreal, QC, Canada, 19–27 August 2021; pp. 1743–1749. [Google Scholar] [CrossRef]
- Zhang, J.; Dong, B.; Zhang, H.; Ding, J.; Heide, F.; Yin, B.; Yang, X. Spiking Transformers for Event-Based Single Object Tracking. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 8791–8800. [Google Scholar] [CrossRef]
- Viale, A.; Marchisio, A.; Martina, M.; Masera, G.; Shafique, M. CarSNN: An Efficient Spiking Neural Network for Event-Based Autonomous Cars on the Loihi Neuromorphic Research Processor. arXiv 2021, arXiv:2107.00401v1. [Google Scholar]
- Haessig, G.; Cassidy, A.; Alvarez, R.; Benosman, R.; Orchard, G. Spiking Optical Flow for Event-Based Sensors Using IBM’s TrueNorth Neurosynaptic System. IEEE Trans. Biomed. Circuits Syst. 2018, 12, 860–870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, J.; Xiong, R.; Liu, H.; Zhang, J.; Huang, T. Spk2ImgNet: Learning to Reconstruct Dynamic Scene from Continuous Spike Stream. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 11991–12000. [Google Scholar] [CrossRef]
- Zheng, Y.; Zheng, L.; Yu, Z.; Shi, B.; Tian, Y.; Huang, T. High-Speed Image Reconstruction through Short-Term Plasticity for Spiking Cameras. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 6354–6363. [Google Scholar] [CrossRef]
- Li, J.; Wang, X.; Zhu, L.; Li, J.; Huang, T.; Tian, Y. Retinomorphic Object Detection in Asynchronous Visual Streams. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtual, 22 February–1 March 2022; Volume 36, pp. 1332–1340. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, W.; Li, H.; Zhang, S. Eventmd: High-Speed Moving Object Detection Based on Event-Based Video Frames. SSRN J. 2022. [Google Scholar] [CrossRef]
- Yao, M.; Gao, H.; Zhao, G.; Wang, D.; Lin, Y.; Yang, Z.; Li, G. Temporal-Wise Attention Spiking Neural Networks for Event Streams Classification. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021; pp. 10201–10210. [Google Scholar] [CrossRef]
- Deng, L.; Wu, Y.; Hu, X.; Liang, L.; Ding, Y.; Li, G.; Zhao, G.; Li, P.; Xie, Y. Rethinking the Performance Comparison between SNNS and ANNS. Neural Netw. 2020, 121, 294–307. [Google Scholar] [CrossRef] [PubMed]
- Massa, R.; Marchisio, A.; Martina, M.; Shafique, M. An Efficient Spiking Neural Network for Recognizing Gestures with a DVS Camera on the Loihi Neuromorphic Processor. arXiv 2021, arXiv:2006.09985. [Google Scholar]
- He, W.; Wu, Y.; Deng, L.; Li, G.; Wang, H.; Tian, Y.; Ding, W.; Wang, W.; Xie, Y. Comparing SNNs and RNNs on Neuromorphic Vision Datasets: Similarities and Differences. arXiv 2020, arXiv:2005.02183. [Google Scholar] [CrossRef]
- Hodgkin, A.L.; Huxley, A.F. A Quantitative Description of Membrane Current and Its Application to Conduction and Excitation in Nerve. J. Physiol. 1952, 117, 500–544. [Google Scholar] [CrossRef]
- Izhikevich, E.M. Simple Model of Spiking Neurons. IEEE Trans. Neural Netw. 2003, 14, 1569–1572. [Google Scholar] [CrossRef]
- Gerstner, W.; Kistler, W.M. Spiking Neuron Models: Single Neurons, Populations, Plasticity; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Meng, Q.; Xiao, M.; Yan, S.; Wang, Y.; Lin, Z.; Luo, Z.-Q. Training High-Performance Low-Latency Spiking Neural Networks by Differentiation on Spike Representation. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 12434–12443. [Google Scholar] [CrossRef]
- Deng, S.; Gu, S. Optimal Conversion of Conventional Artificial Neural Networks to Spiking Neural Networks. arXiv 2021, arXiv:2103.00476. [Google Scholar]
- Sengupta, A.; Ye, Y.; Wang, R.; Liu, C.; Roy, K. Going Deeper in Spiking Neural Networks: VGG and Residual Architectures. Front. Neurosci. 2019, 13, 95. [Google Scholar] [CrossRef] [Green Version]
- Yan, Z.; Zhou, J.; Wong, W.-F. Near Lossless Transfer Learning for Spiking Neural Networks. Proc. AAAI Conf. Artif. Intell. 2021, 35, 10577–10584. [Google Scholar] [CrossRef]
- Fang, W.; Yu, Z.; Chen, Y.; Huang, T.; Masquelier, T.; Tian, Y. Deep Residual Learning in Spiking Neural Networks. In Advances in Neural Information Processing Systems; Curran Associates, Inc.: Red Hook, NY, USA, 2021; Volume 34, pp. 21056–21069. [Google Scholar]
- Neftci, E.O.; Mostafa, H.; Zenke, F. Surrogate Gradient Learning in Spiking Neural Networks: Bringing the Power of Gradient-Based Optimization to Spiking Neural Networks. IEEE Signal Process. Mag. 2019, 36, 51–63. [Google Scholar] [CrossRef]
- Shrestha, S.B.; Orchard, G. SLAYER: Spike Layer Error Reassignment in Time. In Advances in Neural Information Processing Systems; Curran Associates, Inc.: Red Hook, NY, USA, 2018; Volume 31. [Google Scholar]
- Wu, Y.; Deng, L.; Li, G.; Zhu, J.; Shi, L. Spatio-Temporal Backpropagation for Training High-Performance Spiking Neural Networks. Front. Neurosci. 2018, 12, 331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, H.; Wu, Y.; Deng, L.; Hu, Y.; Li, G. Going Deeper With Directly-Trained Larger Spiking Neural Networks. Proc. AAAI Conf. Artif. Intell. 2021, 35, 11062–11070. [Google Scholar] [CrossRef]
- Eshraghian, J.K.; Ward, M.; Neftci, E.; Wang, X.; Lenz, G.; Dwivedi, G.; Bennamoun, M.; Jeong, D.S.; Lu, W.D. Training Spiking Neural Networks Using Lessons From Deep Learning. arXiv 2022, arXiv:2109.12894. [Google Scholar]
Parameter or Model | Value or Type |
---|---|
Constant | |
Synaptic dynamics model | delta-decay-type |
Synaptic conduction model | current-type |
DVS+SN (SpiNNaker) | DVS+SNN (CPU) | RGB+FCNN | RGB+VGG16 | DVS+FCNN | |
---|---|---|---|---|---|
Accuracy | 99.98% | 99.98% | 79.64% | 100% | 99.97% |
Computation | <890 | / | 72,000 | 473 m | 24,000 |
Rotating Speed | Recognition Accuracy | |||
---|---|---|---|---|
99.98% | 452 | 102 | 156 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Z.; Yang, L.; Bao, W.; Tao, L.; Zeng, Y.; Hu, D.; Xiong, J.; Shang, D. High-Speed Object Recognition Based on a Neuromorphic System. Electronics 2022, 11, 4179. https://doi.org/10.3390/electronics11244179
Yang Z, Yang L, Bao W, Tao L, Zeng Y, Hu D, Xiong J, Shang D. High-Speed Object Recognition Based on a Neuromorphic System. Electronics. 2022; 11(24):4179. https://doi.org/10.3390/electronics11244179
Chicago/Turabian StyleYang, Zonglin, Liren Yang, Wendi Bao, Liying Tao, Yinuo Zeng, Die Hu, Jianping Xiong, and Delong Shang. 2022. "High-Speed Object Recognition Based on a Neuromorphic System" Electronics 11, no. 24: 4179. https://doi.org/10.3390/electronics11244179
APA StyleYang, Z., Yang, L., Bao, W., Tao, L., Zeng, Y., Hu, D., Xiong, J., & Shang, D. (2022). High-Speed Object Recognition Based on a Neuromorphic System. Electronics, 11(24), 4179. https://doi.org/10.3390/electronics11244179