A Portable and Low-Cost Triboelectric Nanogenerator for Wheelchair Table Tennis Monitoring
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.3. Characterization and Measurements
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blauwet, C.; Willick, S.E. The Paralympic Movement: Using Sports to Promote Health, Disability Rights, and Social Integration for Athletes with Disabilities. Pm R 2012, 4, 851–856. [Google Scholar] [CrossRef] [PubMed]
- Mauerberg-de Castro, E.; Campbell, D.F.; Tavares, C.P. The global reality of the Paralympic Movement: Challenges and opportunities in disability sports. Mot. Rev. Educ. Fís. 2016, 22, 111–123. [Google Scholar]
- Nagel-Albustin, K.; Crevenna, R. Table tennis for the disabled. Phys. Med. Rehab. Kurortmed. 2008, 18, 150–154. [Google Scholar] [CrossRef]
- Duvall, J.; Gebrosky, B.; Ruffing, J.; Anderson, A.; Ong, S.S.; McDonough, R.; Cooper, R.A. Design of an adjustable wheelchair for table tennis participation. Disabil. Rehabil.-Assist. Technol. 2021, 16, 425–431. [Google Scholar] [CrossRef] [PubMed]
- Xiao, N.; Yu, W.; Han, X. Wearable heart rate monitoring intelligent sports bracelet based on Internet of things. Measurement 2020, 164, 108102. [Google Scholar] [CrossRef]
- Cao, L.N.Y.; Xu, Z.; Wang, Z.L. Application of Triboelectric Nanogenerator in Fluid Dynamics Sensing: Past and Future. Nanomaterial 2022, 12, 3261. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Jie, Y.; Wang, N.; Wang, Z.L. Triboelectric Nanogenerators Driven Self-Powered Electrochemical Processes for Energy and Environmental Science. Adv. Energy Mater. 2016, 6, 1600665. [Google Scholar] [CrossRef]
- Nguyen, Q.-T.; Ahn, K.-K.K. Fluid-Based Triboelectric Nanogenerators: A Review of Current Status and Applications. Int. J. Precis. Eng. Manuf. Green Technol. 2021, 8, 1043–1060. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Y.; Wang, Z.L. Triboelectric nanogenerators as flexible power sources. NPJ Flex. Electron. 2017, 1, 10. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Cheng, T.; Wang, Z.L. Self-Powered Sensors and Systems Based on Nanogenerators. Sensors 2020, 20, 2925. [Google Scholar] [CrossRef]
- Cai, J.; Zhang, Z. A Spring Structure Triboelectric Nanogenerator for Human Gait Monitoring System. Nano 2022, 17, 2250001. [Google Scholar] [CrossRef]
- Jin, L.; Tao, J.; Bao, R.; Sun, L.; Pan, C. Self-powered Real-time Movement Monitoring Sensor Using Triboelectric Nanogenerator Technology. Sci. Rep. 2017, 7, 10521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, S.; Li, X.; Jiang, C.; Zhang, Q.; Peng, B.; Ping, J.; Ying, Y. Omnidirectional wind energy harvester for self-powered agro-environmental information sensing. Nano Energy 2022, 91, 106686. [Google Scholar] [CrossRef]
- Guo, H.; Wan, J.; Wang, H.; Wu, H.; Xu, C.; Miao, L.; Han, M.; Zhang, H. Self-Powered Intelligent Human-Machine Interaction for Handwriting Recognition. Research 2021, 2021, 4689869. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Lu, Y.; Zhu, Z.; Jia, W. Advances in Smart Sensing and Medical Electronics by Self-Powered Sensors Based on Triboelectric Nanogenerators. Micromachines 2021, 12, 698. [Google Scholar] [CrossRef]
- Liu, S.; Yuan, G.; Zhang, Y.; Xie, L.; Shen, Q.; Lei, H.; Wen, Z.; Sun, X. A Self-Powered Gas Sensor Based on Coupling Triboelectric Screening and Impedance Matching Effects. Adv. Mater. Technol. 2021, 6, 2100310. [Google Scholar] [CrossRef]
- Yu, A.; Chen, L.; Chen, X.; Zhang, A.; Fan, F.; Zhan, Y.; Wang, Z.L. Triboelectric sensor as self-powered signal reader for scanning probe surface topography imaging. Nanotechnology 2015, 26, 165501. [Google Scholar] [CrossRef]
- Zhao, T.; Fu, Y.; Sun, C.; Zhao, X.; Jiao, C.; Du, A.; Wang, Q.; Mao, Y.; Liu, B. Wearable biosensors for real-time sweat analysis and body motion capture based on stretchable fiber-based triboelectric nanogenerators. Biosens. Bioelectron. 2022, 205, 114115. [Google Scholar] [CrossRef]
- Bai, Y.; Xu, L.; He, C.; Zhu, L.; Yang, X.; Jiang, T.; Nie, J.; Zhong, W.; Wang, Z.L. High-performance triboelectric nanogenerators for self-powered, in-situ and real-time water quality mapping. Nano Energy 2019, 66, 104117. [Google Scholar] [CrossRef]
- Jia, C.J.; Zhu, Y.S.; Sun, F.X.; Wen, Y.Z.; Wang, Q.; Li, Y.; Mao, Y.P.; Zhao, C.L. Gas-Supported Triboelectric Nanogenerator Based on In Situ Gap-Generation Method for Biomechanical Energy Harvesting and Wearable Motion Monitoring. Sustainability-basel 2022, 14, 14422. [Google Scholar] [CrossRef]
- Cho, H.; Kim, I.; Park, J.; Kim, D. A waterwheel hybrid generator with disk triboelectric nanogenerator and electromagnetic generator as a power source for an electrocoagulation system. Nano Energy 2022, 95, 107048. [Google Scholar] [CrossRef]
- Gao, S.; Chen, Y.; Su, J.; Wang, M.; Wei, X.; Jiang, T.; Wang, Z.L. Triboelectric Nanogenerator Powered Electrochemical Degradation of Organic Pollutant Using Pt-Free Carbon Materials. ACS Nano 2017, 11, 3965–3972. [Google Scholar] [CrossRef] [PubMed]
- Han, G.; Wu, B.; Pu, Y. High output triboelectric nanogenerator based on scotch tape for self-powered flexible electrics. Mater. Technol. 2022, 37, 224–229. [Google Scholar] [CrossRef]
- He, C.; Wang, Z.L. Triboelectric nanogenerator as a new technology for effective PM2.5 removing with zero ozone emission. Prog. Nat. Sci.-Mater. Int. 2018, 28, 99–112. [Google Scholar] [CrossRef]
- Liu, D.; Chen, B.; An, J.; Li, C.; Liu, G.; Shao, J.; Tang, W.; Zhang, C.; Wang, Z.L. Wind-driven self-powered wireless environmental sensors for Internet of Things at long distance. Nano Energy 2020, 73, 104819. [Google Scholar] [CrossRef]
- Ma, M.; Kang, Z.; Liao, Q.; Zhang, Q.; Gao, F.; Zhao, X.; Zhang, Z.; Zhang, Y. Development, applications, and future directions of triboelectric nanogenerators. Nano Res. 2018, 11, 2951–2969. [Google Scholar] [CrossRef]
- Pang, Y.; Zhu, X.; Lee, C.; Liu, S. Triboelectric nanogenerator as next-generation self-powered sensor for cooperative vehicle-infrastructure system. Nano Energy 2022, 97, 107219. [Google Scholar] [CrossRef]
- Qian, C.; Li, L.; Gao, M.; Yang, H.; Cai, Z.; Chen, B.; Xiang, Z.; Zhang, Z.; Song, Y. All-printed 3D hierarchically structured cellulose aerogel based triboelectric nanogenerator for multi-functional sensors. Nano Energy 2019, 63, 103885. [Google Scholar] [CrossRef]
- Saqib, Q.M.; Shaukat, R.A.; Khan, M.U.; Chougale, M.; Bae, J. Biowaste Peanut Shell Powder-Based Triboelectric Nanogenerator for Biomechanical Energy Scavenging and Sustainably Powering Electronic Supplies. ACS Appl. Electron. Mater. 2020, 2, 3953–3963. [Google Scholar] [CrossRef]
- Tian, J.; Wang, F.; Ding, Y.; Lei, R.; Shi, Y.; Tao, X.; Li, S.; Yang, Y.; Chen, X. Self-Powered Room-Temperature Ethanol Sensor Based on Brush-Shaped Triboelectric Nanogenerator. Research 2021, 2021, 8564780. [Google Scholar] [CrossRef]
- Wang, X.; Yin, Y.; Yi, F.; Dai, K.; Niu, S.; Han, Y.; Zhang, Y.; You, Z. Bioinspired stretchable triboelectric nanogenerator as energy-harvesting skin for self-powered electronics. Nano Energy 2017, 39, 429–436. [Google Scholar] [CrossRef]
- Xia, K.; Zhu, Z.; Fu, J.; Li, Y.; Chi, Y.; Zhang, H.; Du, C.; Xu, Z. A triboelectric nanogenerator based on waste tea leaves and packaging bags for powering electronic office supplies and behavior monitoring. Nano Energy 2019, 60, 61–71. [Google Scholar] [CrossRef]
- Xu, L.; Xu, L.; Luo, J.; Yan, Y.; Jia, B.-E.; Yang, X.; Gao, Y.; Wang, Z.L. Hybrid All-in-One Power Source Based on High-Performance Spherical Triboelectric Nanogenerators for Harvesting Environmental Energy. Adv. Energy Mater. 2020, 10, 2001669. [Google Scholar] [CrossRef]
- Yu, X.; Ge, J.; Wang, Z.; Wang, J.; Zhao, D.; Wang, Z.L.; Cheng, T. High-performance triboelectric nanogenerator with synchronization mechanism by charge handling. Energy Convers. Manag. 2022, 263, 115655. [Google Scholar] [CrossRef]
- Yuan, H.; Yu, H.; Liu, X.; Zhao, H.; Zhang, Y.; Xi, Z.; Zhang, Q.; Liu, L.; Lin, Y.; Pan, X.; et al. A High-Performance Coniform Helmholtz Resonator-Based Triboelectric Nanogenerator for Acoustic Energy Harvesting. Nanomaterials 2021, 11, 3431. [Google Scholar] [CrossRef]
- Yun, Y.; Jang, S.; Cho, S.; Lee, S.H.; Hwang, H.J.; Choi, D. Exo-shoe triboelectric nanogenerator: Toward high-performance wearable biomechanical energy harvester. Nano Energy 2021, 80, 105525. [Google Scholar] [CrossRef]
- Sun, F.; Zhu, Y.; Jia, C.; Ouyang, B.; Zhao, T.; Li, C.; Ba, N.; Li, X.; Chen, S.; Che, T.; et al. A Flexible Lightweight Triboelectric Nanogenerator for Protector and Scoring System in Taekwondo Competition Monitoring. Electronics 2022, 11, 1306. [Google Scholar] [CrossRef]
- Ma, X.; Liu, X.; Li, X.; Ma, Y. Light-Weight, Self-Powered Sensor Based on Triboelectric Nanogenerator for Big Data Analytics in Sports. Electronics 2021, 10, 2322. [Google Scholar] [CrossRef]
- Ba, Y.-Y.; Bao, J.-F.; Deng, H.-T.; Wang, Z.-Y.; Li, X.-W.; Gong, T.; Huang, W.; Zhang, X.-S. Single-Layer Triboelectric Nanogenerators Based on Ion-Doped Natural Nanofibrils. ACS Appl. Mater. Interfaces 2020, 12, 42859–42867. [Google Scholar] [CrossRef]
- Dong, K.; Deng, J.; Ding, W.; Wang, A.C.; Wang, P.; Cheng, C.; Wang, Y.-C.; Jin, L.; Gu, B.; Sun, B.; et al. Versatile Core-Sheath Yarn for Sustainable Biomechanical Energy Harvesting and Real-Time Human-Interactive Sensing. Adv. Energy Mater. 2018, 8, 1801114. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, H.; Zhang, J.; Zhang, Z.; Yu, Y.; Luo, J.; Dong, S. A novel rhombic-shaped paper-based triboelectric nanogenerator for harvesting energy from environmental vibration. Sens. Actuator A Phys. 2020, 302, 111806. [Google Scholar] [CrossRef]
- Moon, H.-B.; Park, S.-J.; Kim, A.-C.; Jang, J.-H. Characteristics of upper limb muscular strength in male wheelchair tennis players. J. Exerc. Rehabil. 2013, 9, 375–380. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Pu, X.; Yang, H.; Zeng, Q.; Tang, Q.; Zhang, D.; Hu, C.; Xi, Y. A flutter-effect-based triboelectric nanogenerator for breeze energy collection from arbitrary directions and self-powered wind speed sensor. Nano Res. 2019, 12, 3018–3023. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, Q.; Gan, Y.; Sun, F.; Sun, Z. A Lightweight Sensitive Triboelectric Nanogenerator Sensor for Monitoring Loop Drive Technology in Table Tennis Training. Electronics 2022, 11, 3212. [Google Scholar] [CrossRef]
- Wu, Y.; Luo, Y.; Qu, J.; Daoud, W.A.; Qi, T. Liquid single-electrode triboelectric nanogenerator based on graphene oxide dispersion for wearable electronics. Nano Energy 2019, 64, 103948. [Google Scholar] [CrossRef]
- Srither, S.R.; Rao, D.S.S.; Prasad, S.K. Triboelectric Nanogenerator Based on Biocompatible and Easily Available Polymer Films. Chemistryselect 2018, 3, 5055–5061. [Google Scholar] [CrossRef]
- Xia, R.; Dai, B.; Fu, W.; Gu, N.; Wu, Y. Kinematic Comparisons of the Shakehand and Penhold Grips in Table Tennis Forehand and Backhand Strokes when Returning Topspin and Backspin Balls. J. Sports Sci. Med. 2020, 19, 637–644. [Google Scholar]
- Bankosz, Z.; Winiarski, S. The kinematics of table tennis racquet: Differences between topspin strokes. J. Sports Med. Phys. Fit. 2017, 57, 202–213. [Google Scholar] [CrossRef]
- Doğan, M.; Koçak, M.; Onursal Kılınç, Ö.; Ayvat, F.; Sütçü, G.; Ayvat, E.; Kılınç, M.; Ünver, Ö.; Aksu Yıldırım, S. Functional range of motion in the upper extremity and trunk joints: Nine functional everyday tasks with inertial sensors. Gait Posture 2019, 70, 141–147. [Google Scholar] [CrossRef]
- Miyachi, R.; Sano, A.; Tanaka, N.; Tamai, M.; Miyazaki, J. Measuring Lumbar Motion Angle with a Small Accelerometer: A Reliability Study. J. Chiropr. Med. 2022, 21, 32–38. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, X.; Zhang, M.; Wang, X.; Jia, C.; Zhang, Y. A Portable and Low-Cost Triboelectric Nanogenerator for Wheelchair Table Tennis Monitoring. Electronics 2022, 11, 4189. https://doi.org/10.3390/electronics11244189
Zhu X, Zhang M, Wang X, Jia C, Zhang Y. A Portable and Low-Cost Triboelectric Nanogenerator for Wheelchair Table Tennis Monitoring. Electronics. 2022; 11(24):4189. https://doi.org/10.3390/electronics11244189
Chicago/Turabian StyleZhu, Xiaorui, Mengqi Zhang, Xiaodong Wang, Changjun Jia, and Yingqiu Zhang. 2022. "A Portable and Low-Cost Triboelectric Nanogenerator for Wheelchair Table Tennis Monitoring" Electronics 11, no. 24: 4189. https://doi.org/10.3390/electronics11244189
APA StyleZhu, X., Zhang, M., Wang, X., Jia, C., & Zhang, Y. (2022). A Portable and Low-Cost Triboelectric Nanogenerator for Wheelchair Table Tennis Monitoring. Electronics, 11(24), 4189. https://doi.org/10.3390/electronics11244189