Intelligent Load-Balancing Framework for Fog-Enabled Communication in Healthcare
Abstract
:1. Introduction
- A study of load-balancing algorithms of fog computing along with the upcoming challenges are presented. The role of AI techniques in healthcare for upcoming researchers is depicted.
- A framework is proposed for healthcare so that critical patients requiring immediate help can obtain it immediately from the hospital.
- Fog computing is utilized in the framework to minimize service latency.
2. Taxonomy of Load Balancing in Fog Computing
2.1. Estimated Methods
Stochastic Methods and Probabilistic Methods
- Heuristic Methods
- Meta-Heuristic Methods
2.2. Exact Methods
2.3. Fundamental Methods
2.4. Hybrid Methods
3. AI in Health Care
- Diagnostics in medicine
- Drug discovery
- Clinical trials
- Pain management
- Improving the treatment outcomes
4. Research Methodology
5. Proposed Framework
- All the end-user devices are AI-enabled smart devices that are capable of sensing the parameters related to the human body.
- The fog master server is assumed to be self-adaptive.
Algorithm 1: Cluster-Based Algorithm for Load Balancing in Fog Computing |
Advantages of Proposed Framework
6. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khan, S.; Nazir, S.; García-Magariño, I.; Hussain, A. Deep learning-based urban big data fusion in smart cities: Towards traffic monitoring and flow-preserving fusion. Comput. Electr. Eng. 2020, 89, 106906. [Google Scholar] [CrossRef]
- Malik, S.; Gupta, K. Resource Scheduling in Fog: Taxonomy and Related Aspects. J. Comput. Theor. Nanosci. 2019, 16, 4313–4319. [Google Scholar] [CrossRef]
- Mamata, R.; Solanki, V.K. Performance improvement in contemporary health care using IoT allied with big data. In Handbook of Data Science Approaches for Biomedical Engineering; Academic Press: Cambridge, MA, USA, 2020; pp. 103–119. [Google Scholar]
- Zaguia, A.; Ameyed, D.; Haddar, M.; Cheikhrouhou, O.; Hamam, H. Cognitive IoT-Based e-Learning System: Enabling Context-Aware Remote Schooling during the Pandemic. J. Heal. Eng. 2021, 2021, 1–12. [Google Scholar] [CrossRef]
- Kamali, G.; Katiyar, V. Deadline-credit aware heuristic for dynamic resource provisioning in virtualised cloud environment. Int. J. Internet Technol. Secur. Trans. 2019, 9, 390–403. [Google Scholar]
- Farahani, B.; Barzegari, M.; Aliee, F.S.; Shaik, K.A. Towards collaborative intelligent IoT eHealth: From device to fog, and cloud. Microprocess. Microsystems 2019, 72, 102938. [Google Scholar] [CrossRef]
- Muhammad, S.; Safdar, M.T.; Shahzada, K.; Abid, G.A.; Fawaz, A.; Habib, H.; Omar, C.; Muhammad, M.S. Efficient Joint Key Authentication Model in E-Healthcare. CMC-Comput. Mater. Contin. 2022, 71, 2739–2753. [Google Scholar]
- Dave, M.; Rastogi, V.; Miglani, M.; Saharan, P.; Goyal, N. Smart Fog-Based Video Surveillance with Privacy Preservation based on Blockchain. Wirel. Pers. Commun. 2021, 1–18. [Google Scholar] [CrossRef]
- Mostafa, N. Cooperative fog communications using a multi-level load balancing. In Proceedings of the 2019 Fourth International Conference on Fog and Mobile Edge Computing (FMEC), Rome, Italy, 10–13 June 2019; pp. 45–51. [Google Scholar]
- Bali, M.S.; Gupta, K.; Malik, S. Integrating IoT with Blockchain: A Systematic Review. IoT Anal. Sens. Netw. 2022, 244, 355–369. [Google Scholar]
- Malik, S.; Gupta, K. Smart City: A new phase of sustainable development using fog computing and IoT. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Sanya, China, 12–14 November 2021; IOP Publishing: Bristol, UK, 2021; Volume 1022, p. 012093. [Google Scholar]
- Ijaz, M.; Li, G.; Lin, L.; Cheikhrouhou, O.; Hamam, H.; Noor, A. Integration and Applications of Fog Computing and Cloud Computing Based on the Internet of Things for Provision of Healthcare Services at Home. Electronics 2022, 10, 1077. [Google Scholar] [CrossRef]
- Kumar, M.; Raju, K.S.; Kumar, D.; Goyal, N.; Verma, S.; Singh, A. An efficient framework using visual recognition for IoT based smart city surveillance. Multimed. Tools Appl. 2021, 80, 31277–31295. [Google Scholar] [CrossRef]
- Malik, S.; Gupta, K.; Singh, M. Resource Management in Fog Computing Using Clustering Techniques: A Systematic Study. Ann. Rom. Soc. Cell Biol. 2020, 24, 77–92. [Google Scholar]
- Mahmud, R.; Kotagiri, R.; Buyya, R. Fog computing: A taxonomy, survey and future directions. In Internet of Everything; Springer: Singapore, 2018; pp. 103–130. [Google Scholar]
- Abro, A.; Deng, Z.; Memon, K.A.; Laghari, A.A.; Mohammadani, K.H.; Ain, N.U. A Dynamic Application-Partitioning Algorithm with Improved Offloading Mechanism for Fog Cloud Networks. Future Internet 2019, 11, 141. [Google Scholar] [CrossRef] [Green Version]
- Zahid, M.; Javaid, N.; Ansar, K.; Hassan, K.; Khan, M.K.; Waqas, M. Hill climbing load balancing algorithm on fog computing. In Proceedings of the International Conference on P2P, Parallel, Grid, Cloud and Internet Computing, Taichung, Taiwan, 27–29 October 2018; Springer: Cham, Germany, 2018; pp. 238–251. [Google Scholar] [CrossRef]
- Kamal, M.B.; Javaid, N.; Naqvi, S.A.A.; Butt, H.; Saif, T.; Muhammad, D.K. Heuristic min-conflicts optimizing technique for load balancing on fog computing. In Proceedings of the International Conference on Intelligent Networking and Collaborative Systems, Bratislava, Slovakia, 5–7 September 2018; Springer: Cham, Germany, 2018; pp. 207–219. [Google Scholar]
- Banaie, F.; Yaghmaee, M.H.; Hosseini, S.A.; Tashtarian, F. Load-Balancing Algorithm for Multiple Gateways in Fog-Based Internet of Things. IEEE Internet Things J. 2020, 7, 7043–7053. [Google Scholar] [CrossRef]
- Oueis, J.; Strinati, E.C.; Barbarossa, S. The Fog Balancing: Load Distribution for Small Cell Cloud Computing. In Proceedings of the 2015 IEEE 81st Vehicular Technology Conference (VTC Spring), Glasgow, Scotland, 11–14 May 2015; pp. 1–6. [Google Scholar]
- Xu, X.; Liu, Q.; Qi, L.; Yuan, Y.; Dou, W.; Liu, A.X. A heuristic virtual machine scheduling method for load balancing in fog-cloud computing. In Proceedings of the 2018 IEEE 4th International Conference on Big Data Security on Cloud (BigDataSecurity), IEEE International Conference on High Performance and Smart Computing (HPSC) and IEEE International Conference on Intelligent Data and Security (IDS), Omaha, NE, USA, 3–5 May 2018; pp. 83–88. [Google Scholar]
- Nanda, S.J.; Panda, G. A survey on nature inspired metaheuristic algorithms for partitional clustering. Swarm Evol. Comput. 2014, 16, 1–18. [Google Scholar] [CrossRef]
- He, X.; Ren, Z.; Shi, C.; Fang, J. A novel load balancing strategy of software-defined cloud/fog networking in the Internet of Vehicles. China Commun. 2016, 13, 140–149. [Google Scholar] [CrossRef]
- Wan, J.; Chen, B.; Wang, S.; Xia, M.; Li, D.; Liu, C. Fog computing for energy-aware load balancing and scheduling in smart factory. IEEE Trans. Ind. Inform. 2018, 14, 4548–4556. [Google Scholar] [CrossRef]
- Shi, C.; Ren, Z.; He, X. Research on load balancing for software defined cloud-fog network in real-time mobile face recognition. In International Conference on Communicatins and Networking in China; Springer: Cham, Germany, 2016; pp. 121–131. [Google Scholar]
- Yang, J. Low-latency cloud-fog network architecture and its load balancing strategy for medical big data. J. Ambient Intell. Humaniz. Comput. 2020, 1–10. [Google Scholar] [CrossRef]
- Singh, S.P.; Sharma, A.; Kumar, R. Design and exploration of load balancers for fog computing using fuzzy logic. Simul. Model. Pr. Theory 2019, 101, 102017. [Google Scholar] [CrossRef]
- Abedin, S.F.; Bairagi, A.K.; Munir, S.; Tran, N.H.; Hong, C.S. Fog Load Balancing for Massive Machine Type Communications: A Game and Transport Theoretic Approach. IEEE Access 2018, 7, 4204–4218. [Google Scholar] [CrossRef]
- Woeginger, G.J. Exact algorithms for NP-hard problems: A survey. In Combinatorial Optimization—Eureka, You Shrink! Springer: Berlin/Heidelberg, Germany, 2003; pp. 185–207. [Google Scholar]
- Ningning, S.; Chao, G.; Xingshuo, A.; Qiang, Z. Fog computing dynamic load balancing mechanism based on graph repartitioning. China Commun. 2016, 13, 156–164. [Google Scholar] [CrossRef]
- Puthal, D.; Obaidat, M.S.; Nanda, P.; Prasad, M.; Mohanty, S.P.; Zomaya, A.Y. Secure and sustainable load balancing of edge data centers in fog computing. IEEE Commun. Mag. 2018, 56, 60–65. [Google Scholar] [CrossRef]
- Fan, Q.; Ansari, N. Towards Workload Balancing in Fog Computing Empowered IoT. IEEE Trans. Netw. Sci. Eng. 2018, 7, 253–262. [Google Scholar] [CrossRef]
- Barros, E.; Peixoto, M.; Leite, D.; Batista, B.; Kuehne, B. A fog model for dynamic load flow analysis in smart grids. In Proceedings of the 2018 IEEE Symposium on Computers and Communications (ISCC), Natal, Brazil, 25–28 June 2018; pp. 1–6. [Google Scholar]
- Beraldi, R.; Alnuweiri, H. Sequential randomization load balancing for fog computing. In Proceedings of the 2018 26th International Conference on Software, Telecommunications and Computer Networks (SoftCOM), Supetar, Croatia, 13–15 September 2018; pp. 1–6. [Google Scholar]
- Chen, D.; Kuehn, V. Adaptive radio unit selection and load balancing in the downlink of fog radio access network. In Proceedings of the 2016 IEEE Global Communications Conference (GLOBECOM), Washington, DC, USA, 4–8 December 2016; pp. 1–7. [Google Scholar]
- Maswood, M.M.S.; Rahman, R.; Alharbi, A.G.; Medhi, D. A Novel Strategy to Achieve Bandwidth Cost Reduction and Load Balancing in a Cooperative Three-Layer Fog-Cloud Computing Environment. IEEE Access 2020, 8, 113737–113750. [Google Scholar] [CrossRef]
- Sthapit, S.; Thompson, J.; Robertson, N.M.; Hopgood, J.R. Computational Load Balancing on the Edge in Absence of Cloud and Fog. IEEE Trans. Mob. Comput. 2018, 18, 1499–1512. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.-A.; Walters, J.P.; Crago, S.P. Load balancing for minimizing deadline misses and total runtime for connected car systems in fog computing. In Proceedings of the 2017 IEEE International Symposium on Parallel and Distributed Processing with Applications and 2017 IEEE International Conference on Ubiquitous Computing and Communications (ISPA/IUCC), Guangzhou, China, 12–15 December 2017; pp. 683–690. [Google Scholar]
- Dao, N.-N.; Lee, J.; Vu, D.-N.; Paek, J.; Kim, J.; Cho, S.; Chung, K.-S.; Keum, C. Adaptive Resource Balancing for Serviceability Maximization in Fog Radio Access Networks. IEEE Access 2017, 5, 14548–14559. [Google Scholar] [CrossRef]
- Mukherjee, M.; Liu, Y.; Lloret, J.; Guo, L.; Matam, R.; Aazam, M. Transmission and latency-aware load balancing for fog radio access networks. In Proceedings of the 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, UAE, 9–13 December 2018; pp. 1–6. [Google Scholar]
- Nazar, T.; Javaid, N.; Waheed, M.; Fatima, A.; Bano, H.; Ahmed, N. Modified shortest job first for load balancing in cloud-fog computing. In Proceedings of the International Conference on Broadband and Wireless Computing, Communication and Applications, Fukuoka, Japan, 28–30 October 2018; Springer: Cham, Germany, 2018; pp. 63–76. [Google Scholar]
- Ahmad, N.; Javaid, N.; Mehmood, M.; Hayat, M.; Ullah, A.; Khan, H.A. Fog-cloud based platform for utilization of resources using load balancing technique. In Proceedings of the International Conference on Network-Based Information Systems, Bratislava, Slovakia, 5–7 September 2018; Springer: Cham, Germany, 2018; pp. 554–567. [Google Scholar]
- Tariq, S.; Javaid, N.; Majeed, M.; Ahmed, F.; Nazir, S. Priority Based Load Balancing in Cloud and Fog Based Systems. In Proceedings of the International Conference on Broadband and Wireless Computing, Communication and Applications, Taichung, Taiwan, 27–29 October 2018; Springer: Cham, Germany, 2018; pp. 725–736. [Google Scholar]
- Chekired, D.A.; Khoukhi, L.; Mouftah, H.T. Queuing model for EVs energy management: Load balancing algorithms based on decentralized fog architecture. In Proceedings of the 2018 IEEE International Conference on Communications (ICC), Kansas City, MO, USA, 20–24 May 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–6. [Google Scholar]
- Neto, E.C.P.; Callou, G.; Aires, F. An algorithm to optimise the load distribution of fog environments. In Proceedings of the 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Banff, AB, Canada, 5–8 October 2017; pp. 1292–1297. [Google Scholar]
- Batista, E.; Figueiredo, G.; Peixoto, M.; Serrano, M.; Prazeres, C. Load balancing in the fog of things platforms through software-defined networking. In Proceedings of the 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), Halifax, NS, Canada, 30 July–3 August 2018; pp. 1785–1791. [Google Scholar]
- Verma, S.; Yadav, A.K.; Motwani, D.; Raw, R.S.; Singh, H.K. An efficient data replication and load balancing technique for fog computing environment. In Proceedings of the 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India, 16–18 May 2016; pp. 2888–2895. [Google Scholar]
- Talaat, F.M.; Ali, S.H.; Saleh, A.I.; Ali, H. Effective Load Balancing Strategy (ELBS) for Real-Time Fog Computing Environment Using Fuzzy and Probabilistic Neural Networks. J. Netw. Syst. Manag. 2019, 27, 883–929. [Google Scholar] [CrossRef]
- Naqvi, S.A.A.; Javaid, N.; Butt, H.; Kamal, M.B.; Hamza, A.; Kashif, M. Metaheuristic optimization technique for load balancing in cloud-fog environment integrated with smart grid. In Proceedings of the International Conference on Network-Based Information Systems, Bratislava, Slovakia, 5–7 September 2018; Springer: Cham, Germany, 2018; pp. 700–711. [Google Scholar]
- Abbasi, S.H.; Javaid, N.; Ashraf, M.H.; Mehmood, M.; Naeem, M.; Rehman, M. Load stabilizing in fog computing environment using load balancing algorithm. In Proceedings of the International Conference on Broadband and Wireless Computing, Communication and Applications, Fukuoka, Japan, 28–30 October 2018; Springer: Cham, Germany, 2018; pp. 737–750. [Google Scholar]
- Zubair, M.; Javaid, N.; Ismail, M.; Zakria, M.; Zaheer, M.A.; Saeed, F. Integration of cloud-fog based platform for load balancing using hybrid genetic algorithm using bin packing technique. In Proceedings of the International Conference on P2P, Parallel, Grid, Cloud and Internet Computing, Tunghai University, Taichung, Taiwan, 27–29 October 2018; pp. 279–292. [Google Scholar]
- Waseem, Q.; Alshamrani, S.; Nisar, K.; Din, W.W.; Alghamdi, A. Future Technology: Software-Defined Network (SDN) Forensic. Symmetry 2021, 13, 767. [Google Scholar] [CrossRef]
- Talaat, F.M.; Saraya, M.S.; Saleh, A.I.; Ali, H.A.; Ali, S.H. A load balancing and optimization strategy (LBOS) using reinforcement learning in fog computing environment. J. Ambient. Intell. Humaniz. Comput. 2020, 11, 1–16. [Google Scholar] [CrossRef]
- Shah, R.; Chircu, A. IoT and AI in healthcare: A systematic literature review. Issues Inf. Syst. 2018, 19. [Google Scholar]
- Shaheen, M.Y. AI in Healthcare: Medical and socio-economic benefits and challenges. ScienceOpen Preprints 2021. [Google Scholar] [CrossRef]
- Panesar, A. Machine Learning and AI for Healthcare; Apress: Coventry, UK, 2019. [Google Scholar]
- Nisar, K. Smart Home: Multisensor Information Fusion towards Better Healthcare. Adv. Sci. Lett. 2018, 24, 1896–1901. [Google Scholar] [CrossRef]
- Haider, I.; Khan, K.B.; Haider, M.A.; Saeed, A.; Nisar, K. Automated Robotic System for Assistance of Isolated Patients of Coronavirus (COVID-19). In Proceedings of the 2020 IEEE 23rd International Multitopic Conference (INMIC), Bahawalpur, Pakistan, 5–7 November 2020; pp. 1–6. [Google Scholar]
- Sodhro, A.H.; Al-Rakhami, M.S.; Wang, L.; Magsi, H.; Zahid, N.; Pirbhulal, S.; Nisar, K.; Ahmad, A. Decentralized Energy Efficient Model for Data Transmission in IoT-based Healthcare System. In Proceedings of the 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring), Helsinki, Finland, 25–28 April 2021; pp. 1–5. [Google Scholar]
- Sarkar, N.I.; Kuang, A.X.; Nisar, K.; Amphawan, A. Hospital environment scenarios using WLAN over OPNET simulation tool. Int. J. Inf. Commun. Technol. Hum. Dev. (IJICTHD) 2014, 6, 69–90. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malik, S.; Gupta, K.; Gupta, D.; Singh, A.; Ibrahim, M.; Ortega-Mansilla, A.; Goyal, N.; Hamam, H. Intelligent Load-Balancing Framework for Fog-Enabled Communication in Healthcare. Electronics 2022, 11, 566. https://doi.org/10.3390/electronics11040566
Malik S, Gupta K, Gupta D, Singh A, Ibrahim M, Ortega-Mansilla A, Goyal N, Hamam H. Intelligent Load-Balancing Framework for Fog-Enabled Communication in Healthcare. Electronics. 2022; 11(4):566. https://doi.org/10.3390/electronics11040566
Chicago/Turabian StyleMalik, Swati, Kamali Gupta, Deepali Gupta, Aman Singh, Muhammad Ibrahim, Arturo Ortega-Mansilla, Nitin Goyal, and Habib Hamam. 2022. "Intelligent Load-Balancing Framework for Fog-Enabled Communication in Healthcare" Electronics 11, no. 4: 566. https://doi.org/10.3390/electronics11040566
APA StyleMalik, S., Gupta, K., Gupta, D., Singh, A., Ibrahim, M., Ortega-Mansilla, A., Goyal, N., & Hamam, H. (2022). Intelligent Load-Balancing Framework for Fog-Enabled Communication in Healthcare. Electronics, 11(4), 566. https://doi.org/10.3390/electronics11040566