High-Voltage LC-Parallel Resonant Converter with Current Control to Detect Metal Pollutants in Water through Glow-Discharge Plasma
Abstract
:1. Introduction
- Ignition: To establish glow discharge between electrodes, it is necessary to break the dielectric strength of the air in the gap first. In atmospheric air, under the worst conditions, an electric field of 3 kV/mm is enough for this purpose. Therefore, the power source must be capable of generating up to 15 kV. However, the actual value will depend on the operating conditions, such as the atmospheric pressure, the air moisture content or the configuration of the electrodes. To reach the required voltage level, the capacitor at the output of the power source is charged by the resonant stage. Voltage and current conditions change dynamically throughout the circuit in this charging process. It might be considered as a transient, which would end in a high output voltage and null output current state.
- Glow discharge: Just after dielectric breakdown, the output voltage must diminish instantaneously to a considerably lower value between 450 V to 750 V DC, to establish normal glow through the gap. Now, a stable operation requires controlling the output current instead the voltage. The operator has the chance to select the reference in a range from 70 mA to 180 mA DC.
2. Power Source Design
3. Dynamic Behavior
4. Experimental Tests
5. Autonomy of the Equipment
- -
- The inductor must withstand the output voltage, which complicates isolation issues.
- -
- The real inductor presents a parallel capacitance, which is instantaneously charged at breakdown. This capacitance must be maintained under control to prevent an additional starting current peak.
6. Performance of the Unit
- -
- A pollutant, Cd, in a proportion of 0.5 ppm as the metal to be identified.
- -
- Two acids to improve the conductivity of the solution: 0.65% of nitric acid and 1% of formic acid.
7. Discussion
8. Conclusions
- An intrinsic voltage gain (without a step-up transformer) centered in the stage-optimum range of 0.3–7.5.
- A step-up transformer with a magnetizing inductor that can be ignored in any resonant net and does not affect the core size. A standard size core that supports windings in separate columns with enough isolation and provides a suitable leakage inductance.
Author Contributions
Funding
Conflicts of Interest
Appendix A
- The voltage in the inductor, LF, is equal to the voltage in the resistor, RX.
- The voltage in the capacitor is equal to the addition of the voltages in the inductor, the resistor, RA, and VA. RA represents the negative resistor and VA represents the voltage of the arc in the glow discharge steady state.
References
- Pais, I.; Jones, J.B. The Handbook of Trace Elements; CRC Press: Boca Raton, FL, USA, 1997. [Google Scholar]
- Jakubowsky, N.; Moens, L.; Vanhaecke, F. Sector field mass spectrometers in ICP-MS. Spectrochim. Acta Part B At. Spectrosc. 1998, 53, 1739–1763. [Google Scholar] [CrossRef]
- Hoffmann, E.; Stroobant, V. Mass Spectrometry, Principles and Applications; John Wiley and Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Aramendía, M.; Resano, M.; Vanhaecke, F. Electrothermal vaporization-inductively coupled plasma-mass spectrometry: A versatile tool for tackling challenging samples: A critical review. Anal. Chim. Acta 2009, 648, 23–44. [Google Scholar] [CrossRef]
- Rosen, R. Mass spectrometry for monitoring micropollutants in water. Curr. Opin. Biotechnol. 2007, 18, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Tabata, M.; Ghaffar, A.; Eto, Y.; Nishimoto, J.; Yamamoto, K. Distribution of heavy metals in interstitial waters and sediments at different sites in Ariake bay, Japan. Water J. Eur. Water Assoc. 2007, 5, 1–24. [Google Scholar]
- Sun, J.; Yang, Z.G.; Lee, H. Simultaneous speciation and determination of arsenic chromium and cadmium in water samples by high performance liquid chromatography with inductively coupled plasma mass spectrometry. Anal. Methods 2015, 7, 2653–2658. [Google Scholar] [CrossRef]
- Orejas, J.; Pisonero, J.; Bordel, N.; Nelis, T.; Guillot, P.; Sanz-Medel, A. Bidimensional characterization of the emission spectra in a direct current atmospheric pressure glow discharge. Spectrochim. Acta Part B At. Spectrosc. 2012, 76, 166–174. [Google Scholar] [CrossRef]
- Li, X.; Yang, D.; Yuan, H.; Liang, J.P.; Xu, T.; Zhao, Z.; Zhou, X.; Zhang, L.; Wang, W. Detection of trace heavy metals using atmospheric pressure glow discharge by optical emission spectra. High Volt. 2019, 4, 228–233. [Google Scholar] [CrossRef]
- Garamoon, A.A.; El-zeer, D.M. Atmospheric pressure glow discharge plasma in air at frequency 50 Hz. Plasma Sources Sci. Technol. 2009, 18, 045006. [Google Scholar] [CrossRef]
- Machala, Z.; Janda, M.; Hensel, K.; Jedlovsky, I.; Lestinska, L.; Fotin, V.; Martisovits, V.; Morvova, M. Emission spectroscopy of atmospheric pressure plasmas for bio-medical and environmental applications. J. Mol. Spectrosc. 2007, 243, 194–201. [Google Scholar] [CrossRef]
- Saleh, S.A.; Allen, B.; Ozkop, E.; Colpitts, B.G. Multistage and multilevel power electronic converter-based power supply for plasma DBD devices. IEEE Trans. Ind. Electron. 2018, 65, 5466–5475. [Google Scholar] [CrossRef]
- Baba, S.; Gajewski, W.; Jasinski, M.; Zelechowski, M.; Kazierkowski, M. High Performance Power Supplies for Plasma Materials Processing. IEEE Access 2021, 9, 19327–19344. [Google Scholar] [CrossRef]
- Biela, J.; Marxgut, C.; Bortis, D.; Kolar, J.W. Solid state modulator for plasma channel drilling. IEEE Trans. Ind. Electron. 2009, 16, 1093–1099. [Google Scholar] [CrossRef]
- Grass, N.; Hartmann, W.; Klöckner, M. Application of different types of high-voltage supplies on industrial electrostatic Precipitators. IEEE Trans. Ind. Appl. 2004, 4, 1513–1520. [Google Scholar] [CrossRef]
- Vukosavic, S.; Peric, L.; Susic, S. A Novel Power Converter Topology for Electrostatic Precipitators. IEEE Trans. Power Electron. 2016, 31, 152–164. [Google Scholar] [CrossRef]
- Jang, S.; Ryoo, H.; Ahn, S.; Kim, J.; Rim, G.H. Development and Optimization of High-Voltage Power Supply System for Industrial Magnetron. IEEE Trans. Ind. Electron. 2012, 59, 1453–1461. [Google Scholar] [CrossRef]
- Jang, S.R.; Seo, J.H.; Ryoo, H.J. Development of a 50-kV 100-kW three phase resonant converter for 95-GHz Gyrotron. IEEE Trans. Ind. Electron. 2016, 63, 6674–6683. [Google Scholar] [CrossRef]
- Eon, T.H.; Shin, M.H.; Park, Y.H.; Kim, D.S.; Kim, Y.R.; Won, C.Y. Design of bipolar pulse power supply based in LLC resonant converter for reactive sputtering process. In Proceedings of the 2016 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific), Busan, Korea, 1–4 June 2016; pp. 391–396. [Google Scholar]
- Kwon, M.J.; Lee, W.C. A study on the analysis and control of no-load characteristics of LCC resonant converter for plasma process. In Proceedings of the 2018 International Power Electronics Conference (IPEC-Niigata 2018—ECCE Asia), Niigata, Japan, 20–24 May 2018; pp. 114–117. [Google Scholar]
- Jafari, H.; Habibi, M. High voltage charging power supply based on an LCC-type resonant converter operating at continuous conduction mode. IEEE Trans. Power Electron. 2020, 35, 5461–5478. [Google Scholar] [CrossRef]
- Martín-Ramos, J.A.; Sáiz, P.J.V.; Pernía, A.M.; Díaz, J.; Martínez, J.A. Optimal Control of a High-Voltage Power Supply Based on the PRC-LCC Topology with a Capacitor as Output Filter. IEEE Trans. Ind. Appl. 2013, 49, 2323–2329. [Google Scholar] [CrossRef]
- Villegas, P.J.; Martín-Ramos, J.A.; Díaz, J.; Martínez, J.Á.; Prieto, M.J.; Pernía, A.M. A Digitally Controlled Power Converter for an Electrostatic Precipitator. Energies 2017, 10, 2150. [Google Scholar] [CrossRef] [Green Version]
- Deng, L.; Wang, P.; Li, X.; Xiao, H.; Peng, T. Investigation on the parasitic capacitance of high frequency and high voltage transformers of multi-section windings. IEEE Access 2020, 8, 114065–140073. [Google Scholar] [CrossRef]
- Borage, M.; Nagesh, K.V.; Bhatia, M.S.; Tiwari, S. Design of LCL-T Resonant Converter Including the Effect of Transformer Winding Capacitance. IEEE Trans. Ind. Electron. 2009, 56, 1420–1427. [Google Scholar] [CrossRef]
- Martín-Ramos, J.A.; Pardo-Vaquero, Ó.; Díaz, J.; Nuño, F.; Villegas, P.J.; Martín-Pernía, A. Modelling a Multilevel LCC Resonant AC-DC Converter for Wide Variations in the Input and the Load. IEEE Trans. Power Electron. 2019, 34, 5217–5228. [Google Scholar] [CrossRef] [Green Version]
- Cheng, M.; Liang, T.J.; Chen, S.M. A phase-shift resonant power system with novel plasma impedance measurement methodology for plasma cleaning applications. In Proceedings of the2017 IEEE 3rd International Future Energy Electronics Conference and ECCE Asia (IFEEC 2017—ECCE Asia), Kaohsiung, Taiwan, 3–7 June 2017; pp. 698–703. [Google Scholar]
- Álvarez, A.A.; Mayor, H.A.; Villegas, P.J.; Pernía, A.M.; Nuño, F.; Ramos, J.A.M. Experimental measurement of power supplies dynamic behavior. In Proceedings of the IECON 2016—42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, Italy, 23–26 October 2016; pp. 4976–4982. [Google Scholar]
LS | LM | CP | n1 | n1:n2 |
---|---|---|---|---|
8.3 μH | 96 μH | 17.5 nF | 5 | 1:42 |
Measured RA | C0 | Limit for LF | Selected LF | Simulated Peak Current for 8 kV | Measured Peak Current for 8 kV |
---|---|---|---|---|---|
1 kΩ | 27.5 nF | >33 mH | 360 mH | 0.86 A | 0.83 A |
I0 (mA) | 50 | 100 | 120 | 150 | 170 |
V0 (V) | 529 | 470 | 454 | 436 | 425 |
P0 (W) | 26.5 | 47 | 54.5 | 65.4 | 72.3 |
Efficiency without LF (%) | 77 | 66 | 62 | 56 | 53 |
Efficiency with LF (%) | 87 | 86 | 84 | 82 | 80 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villegas, P.J.; Castro, D.G.; Martínez-Esteban, J.A.; Fernández, D.B.; Marcos-Robredo, G.; Martín-Ramos, J.A. High-Voltage LC-Parallel Resonant Converter with Current Control to Detect Metal Pollutants in Water through Glow-Discharge Plasma. Electronics 2022, 11, 644. https://doi.org/10.3390/electronics11040644
Villegas PJ, Castro DG, Martínez-Esteban JA, Fernández DB, Marcos-Robredo G, Martín-Ramos JA. High-Voltage LC-Parallel Resonant Converter with Current Control to Detect Metal Pollutants in Water through Glow-Discharge Plasma. Electronics. 2022; 11(4):644. https://doi.org/10.3390/electronics11040644
Chicago/Turabian StyleVillegas, Pedro J., Daniel González Castro, Juan A. Martínez-Esteban, David Blanco Fernández, Germán Marcos-Robredo, and Juan A. Martín-Ramos. 2022. "High-Voltage LC-Parallel Resonant Converter with Current Control to Detect Metal Pollutants in Water through Glow-Discharge Plasma" Electronics 11, no. 4: 644. https://doi.org/10.3390/electronics11040644
APA StyleVillegas, P. J., Castro, D. G., Martínez-Esteban, J. A., Fernández, D. B., Marcos-Robredo, G., & Martín-Ramos, J. A. (2022). High-Voltage LC-Parallel Resonant Converter with Current Control to Detect Metal Pollutants in Water through Glow-Discharge Plasma. Electronics, 11(4), 644. https://doi.org/10.3390/electronics11040644