An Artificial Fish Swarm Scheme Based on Heterogeneous Pheromone for Emergency Evacuation in Social Networks
Abstract
:1. Introduction
2. Related Work
3. Two-Layer Evacuation Optimization Model
3.1. Construction of the Evacuation Network
3.2. Mathematical Model
- —node number;
- —the number of evacuees;
- —index for individual;
- —the number of nodes in the visual field;
- —the length of edge ;
- —the number of individuals at node ;
- —the moving speed of evacuees;
- —the Euclidean distance between node and the exit nodes.
3.2.1. Preying
3.2.2. Swarming
3.2.3. Following Behavior
4. Artificial Fish Swarm Algorithm Based on Pheromones
4.1. Pheromone Update Strategy
4.2. The Influence of Pheromones on Bulletin Board Decision
4.3. Steps of the AFSAP
Algorithm 1. AFSAP algorithm | |
Input | Network nodes and their corresponding coordinates, capacity, and adjacency matrix. |
The parameters of the AFSAP algorithm, including population size , the maximum number of iterations , the visual step , the evaporation rate of the pheromone , the total amount of pheromone , the default moving speed of people , and the congestion degree . | |
Step 1 | Initialize the artificial fish swarm by first placing artificial fish randomly on the nodes of the evacuation network and assigning attributes to each artificial fish. |
Step 2 | For each iteration , repeat Step 3 to Step 12. |
Step 3 | For each artificial fish , repeat Step 4 to Step 7. |
Step 4 | Execute preying, swarming, and following behaviors, and calculate the corresponding probabilities according to Equations (1)–(3). Choose node in the visual field as the next position to move to, and record the selected node of the corresponding behavior in the bulletin board. |
Step 5 | Calculate the fitness of the three behaviors of the current artificial fish using Equation (8) and Equation (9). Update the bulletin board. |
Step 6 | The artificial fish executes the behavior with the minimum fitness value. Choose the node with the minimum fitness value as the next node, and enter the edge moving state at a certain speed. |
Step 7 | . If , then go to step 8, otherwise go to Step 4. |
Step 8 | If all the individuals have reached the exit nodes, go to Step 9, otherwise, go to Step 3. |
Step 9 | Record the evacuation routes. |
Step 10 | Update the pheromones on each edge according to Equation (5). |
Step 11 | . |
Step 12 | If , go to Step 2, otherwise output the results. |
Output | Evacuation results, including time, routes, and individual distribution. |
5. Experiments and Simulations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, R.; Cui, Y.; Wang, Y.; Jiang, J. A modified social force model with different categories of pedestrians for subway station evacuation. Tunn. Undergr. Space Technol. 2021, 110, 103837. [Google Scholar] [CrossRef]
- Alam, M.J.; Habib, M.A. Modeling traffic disruptions during mass evacuation. Proced. Comput. Sci. 2020, 170, 506–513. [Google Scholar] [CrossRef]
- Wang, Y.; Fang, W.; Ding, Y.; Xiong, N. Computation offloading optimization for UAV-assisted mobile edge computing: A deep deterministic policy gradient approach. Wirel. Netw. 2021, 27, 2991–3006. [Google Scholar] [CrossRef]
- Ohba, T.; Tanigawa, K.; Liutsko, L. Evacuation after a nuclear accident: Critical reviews of past nuclear accidents and proposal for future planning. Environ. Int. 2021, 148, 106379. [Google Scholar] [CrossRef]
- Chen, X.; Hu, J.; Chen, Z.; Lin, B.; Xiong, N.; Min, G. A reinforcement learning-empowered feedback control system for industrial Internet of things. IEEE Trans. Ind. Inform. 2022, 18, 2724–2733. [Google Scholar] [CrossRef]
- Xie, W.; Lee, E.; Li, T.; Shi, M.; Cao, R.; Zhang, Y. A study of group effects in pedestrian crowd evacuation: Experiments, modelling and simulation. Saf. Sci. 2020, 133, 105029. [Google Scholar] [CrossRef]
- Chen, C.; Sun, H.; Lei, P.; Zhao, D.; Shi, C. An extended model for crowd evacuation considering pedestrian panic in artificial attack. Phys. A Stat. Mech. Appl. 2021, 571, 125833. [Google Scholar] [CrossRef]
- Zhong, Y.; Deng, Z.; Xu, K. An effective artificial fish swarm optimization algorithm for two-sided assembly line balancing problems. Comput. Ind. Eng. 2019, 138, 106121. [Google Scholar] [CrossRef]
- Xin, R.; Yuan, Y.; He, J.; Zhen, S.; Zhao, Y. Random active shield generation based on modified artificial fish-swarm algorithm. Comput. Secur. 2020, 88, 101552. [Google Scholar] [CrossRef]
- Gao, K.; Han, F.; Dong, P.; Xiong, N.; Du, R. Connected vehicle as a mobile sensor for real time queue length at signalized intersections. Sensors 2019, 19, 2059. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Ye, K.; Jiang, M.; Yao, J.; Xiong, N.N.; Yen, G.G. Solving hybrid charging strategy electric vehicle based dynamic routing problem via evolutionary multiobjective optimization. Swarm Evol. Comput. 2022, 68, 100975. [Google Scholar] [CrossRef]
- Li, J.; Qiu, M.; Zhang, Y.; Xiong, N.; Li, Z. A fast obstacle detection method by fusion of double-layer region growing algorithm and Grid-SECOND Detector. IEEE Access 2021, 9, 32053–32063. [Google Scholar] [CrossRef]
- Jiang, W.; Jiang, W.C.; Wang, J.X.; Gao, J.; Xiong, N. ORP: An online rule placement scheme to optimize the traffic overhead for data center networks. IEEE Trans. Netw. Sci. Eng. 2021, 8, 2183–2197. [Google Scholar] [CrossRef]
- Forestiero, A. Metaheuristic algorithm for anomaly detection in internet of things leveraging on a neural-driven multiagent system. Knowl.-Based Syst. 2021, 228, 107241. [Google Scholar] [CrossRef]
- Zhang, S.; Lu, C.; Jiang, S.; Shan, L.; Crabbe, J.; Xion, N.N. Energy management optimization of open-pit mine solar photothermal-photoelectric mem-brane distillation using a support vector machine and a non-dominated genetic algorithm. IEEE Access 2020, 8, 155766–155782. [Google Scholar]
- Gu, Q.; Chen, H.; Chen, L.; Xinhong, L.; Xiong, N.N. A many-objective evolutionary algorithm with reference points-based strengthened domi-nance relation. Inf. Sci. 2021, 554, 236–255. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhou, C.; Tian, Y.C.; Xiong, N.; Qin, Y.; Hu, B. A fuzzy probability Bayesian network approach for dynamic cybersecurity risk assess-ment in industrial control systems. IEEE Trans. Ind. Inform. 2017, 14, 2497–2506. [Google Scholar] [CrossRef] [Green Version]
- Kan, X.; Fan, Y.; Fang, Z.; Cao, L.; Xiong, N.N.; Yang, D.; Xuan, L. A novel IoT network intrusion detection approach based on adaptive particle swarm optimi-zation convolutional neural network. Inf. Sci. 2021, 568, 147–162. [Google Scholar] [CrossRef]
- Forcael, E.; González, V.; Orozco, F.; Vargas, S.; Pantoja, A.; Moscoso, P. Ant colony optimization model for Tsunamis evacuation routes. Comput. Civ. Infrastruct. Eng. 2014, 29, 723–737. [Google Scholar] [CrossRef]
- Cao, X.; Li, X.; Wei, X. Dynamic programming of emergency evacuation path based on Dijkstra-ACO hybrid algorithm. J. Electron. Inf. Technol. 2020, 42, 1502–1509. [Google Scholar]
- Lu, P.; Yang, H.; Li, H.; Li, M.; Zhang, Z. Swarm intelligence, social force and multi-agent modeling of heroic altruism behaviors under collective risks. Knowl.-Based Syst. 2021, 214, 106725. [Google Scholar] [CrossRef]
- Haghani, M. Optimising crowd evacuations: Mathematical, architectural and behavioural approaches. Saf. Sci. 2020, 128, 104745. [Google Scholar] [CrossRef]
- Liu, H.; Xu, B.; Lu, D.; Zhang, G. A path planning approach for crowd evacuation in buildings based on improved artificial bee colony algorithm. Appl. Soft Comput. 2018, 68, 360–376. [Google Scholar] [CrossRef]
- Khamis, N.; Selamat, H.; Ismail, F.S.; Lutfy, O.F.; Haniff, M.F.; Nordin, I.N.A.M. Optimized exit door locations for a safer emergency evacuation using crowd evacuation model and artificial bee colony optimization. Chaos Solitons Fractals 2019, 131, 109505. [Google Scholar] [CrossRef]
- Yang, X.; Yang, X.; Li, Y. Obstacle avoidance in the improved social force model based on ant colony optimization during pedestrian evacuation. Physica A Stat. Mech. Appl. 2021, 583, 126256. [Google Scholar] [CrossRef]
- Li, Z.; Yu, H.; Chen, X.; Zhang, G.; Ma, D. Tsunami-induced traffic evacuation strategy optimization. Transp. Res. Part D Transp. Environ. 2019, 77, 535–559. [Google Scholar] [CrossRef]
- Gao, H.; Medjdoub, B.; Luo, H.; Zhong, H.; Zhong, B.; Sheng, D. Building evacuation time optimization using constraint-based design approach. Sustain. Cities Soc. 2020, 52, 101839. [Google Scholar] [CrossRef]
- Hafeez, G.; Khan, I.; Jan, S. A novel hybrid load forecasting framework with intelligent feature engineering and opti-mization algorithm in smart grid. Appl. Eng. 2021, 299, 117178. [Google Scholar] [CrossRef]
- Forestiero, A.; Mastroianni, C.; Spezzano, G. Reorganization and discovery of grid information with epidemic tuning. Future Gener. Comput. Syst. 2008, 24, 788–797. [Google Scholar] [CrossRef]
- Ullah, K.; Ali, S.; Khan, T.A.; Khan, I.; Jan, S.; Shah, I.; Hafeez, G. An optimal energy optimization strategy for smart grid integrated with renewable energy sources and demand response programs. Energies 2020, 13, 5718. [Google Scholar] [CrossRef]
- Tamakloe, R.; Hong, J.; Tak, J.; Park, D. Finding evacuation routes using traffic and network structure information. Transp. Res. Part D Transp. Environ. 2021, 95, 102853. [Google Scholar] [CrossRef]
- Nakano, G.; Yamori, K.; Miyashita, T.; Urra, L.; Mas, E.; Koshimura, S. Combination of school evacuation drill with tsunami inundation simulation: Consensus-making between disaster experts and citizens on an evacuation strategy. Int. J. Disaster Risk Reduct. 2020, 51, 101803. [Google Scholar] [CrossRef]
- Dorigo, M.; Caro, G.D.; Gambardella, L.M. Ant algorithms for discrete optimization. Artif. Life 1999, 5, 137–172. [Google Scholar] [CrossRef] [Green Version]
- Tuani, A.F.; Keedwell, E.; Collett, M. Heterogenous adaptive ant colony optimization with 3-opt local search for the travelling salesman problem. Appl. Soft Comput. 2020, 97, 106720. [Google Scholar] [CrossRef]
- Miao, C.; Chen, G.; Yan, C.; Wu, Y. Path planning optimization of indoor mobile robot based on adaptive ant colony algorithm. Comput. Ind. Eng. 2021, 156, 107230. [Google Scholar] [CrossRef]
- Zong, X.; Xu, H. Potential field driven evacuation model based on ant colony algorithm. In Proceedings of the 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery, Guilin, China, 29–31 July 2017; pp. 768–772. [Google Scholar]
- Fang, Z.; Zong, X.; Li, Q.; Xiong, S. Hierarchical multi-objective evacuation routing in stadium using ant colony optimization approach. J. Transp. Geogr. 2011, 19, 443–451. [Google Scholar] [CrossRef]
- Zong, X.; Wang, W.; Du, J.; Jiang, Y. Tree hierarchical directed evacuation network model based on artificial fish swarm al-gorithm. Int. J. Mod. Phys. C 2019, 30, 1950097. [Google Scholar] [CrossRef]
Name | Value | Description |
---|---|---|
5000–40,000 | Number of initial people in the stadium | |
1 | Visual step of each individual | |
100 | Maximum number of iterations | |
0.7 | Evaporation rate | |
100 | Total amount of pheromone | |
2 m/s | Default moving speed of people | |
0.8 | Congestion degree |
Algorithm | Minimum Time | Average Time (s) | Maximum Time (s) |
---|---|---|---|
ACO | 1096 | 1120 | 1354 |
HMERP | 703 | 818 | 899 |
HDAFSA | 354 | 400 | 410 |
AFSAP | 346 | 354 | 358 |
Exit No. | AFSA | HDAFSA | AFSAP | Deviation | AFSA | HDAFSA | AFSAP |
---|---|---|---|---|---|---|---|
1 | 5953 | 2309 | 2438 | 3453 | −191 | −62 | |
2 | 668 | 1239 | 3119 | −1832 | −1261 | 619 | |
3 | 2115 | 2373 | 2276 | −385 | −127 | −224 | |
4 | 4047 | 1285 | 2053 | 1547 | −1215 | −447 | |
5 | 2023 | 2247 | 2112 | −477 | −253 | −388 | |
6 | 418 | 1752 | 1731 | −2082 | −748 | −769 | |
7 | 2329 | 1798 | 2479 | −171 | −702 | −21 | |
8 | 1288 | 4187 | 2844 | −1212 | 1687 | 344 | |
9 | 3835 | 4191 | 3035 | 1335 | 1691 | 535 | |
10 | 2323 | 3572 | 2913 | −177 | 1072 | 413 | |
Range | 5535 | 2952 | 1388 | Standard deviation | 1689.67 | 1110.04 | 466.01 |
Total People | Total Path Length (m) | Average Path Length (m) | Shortest Path Length (m) | Longest Path Length (m) | Minimum Time (s) | Maximum Time (s) |
---|---|---|---|---|---|---|
5000 | 246,366.89 | 49.27 | 30.78 | 82.46 | 15.45 | 118.01 |
10,000 | 496,407.63 | 49.64 | 30.78 | 82.46 | 15.49 | 210.12 |
15,000 | 744,126.97 | 49.60 | 30.78 | 83.61 | 15.49 | 278.55 |
20,000 | 1010,276.70 | 50.51 | 30.78 | 82.46 | 15.48 | 330.10 |
25,000 | 1278,948.58 | 51.16 | 30.78 | 85.12 | 15.48 | 357.86 |
30,000 | 1555,239.98 | 51.84 | 30.78 | 85.12 | 15.48 | 433.54 |
35,000 | 1847,099.55 | 50.77 | 30.78 | 85.12 | 15.48 | 497.15 |
40,000 | 2142,870.49 | 51.57 | 30.78 | 98.52 | 15.53 | 569.24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zong, X.; Yi, J.; Wang, C.; Ye, Z.; Xiong, N. An Artificial Fish Swarm Scheme Based on Heterogeneous Pheromone for Emergency Evacuation in Social Networks. Electronics 2022, 11, 649. https://doi.org/10.3390/electronics11040649
Zong X, Yi J, Wang C, Ye Z, Xiong N. An Artificial Fish Swarm Scheme Based on Heterogeneous Pheromone for Emergency Evacuation in Social Networks. Electronics. 2022; 11(4):649. https://doi.org/10.3390/electronics11040649
Chicago/Turabian StyleZong, Xinlu, Jingxi Yi, Chunzhi Wang, Zhiwei Ye, and Naixue Xiong. 2022. "An Artificial Fish Swarm Scheme Based on Heterogeneous Pheromone for Emergency Evacuation in Social Networks" Electronics 11, no. 4: 649. https://doi.org/10.3390/electronics11040649
APA StyleZong, X., Yi, J., Wang, C., Ye, Z., & Xiong, N. (2022). An Artificial Fish Swarm Scheme Based on Heterogeneous Pheromone for Emergency Evacuation in Social Networks. Electronics, 11(4), 649. https://doi.org/10.3390/electronics11040649