Cost Model Based Incremental Processing in Dynamic Graphs
Abstract
:1. Introduction
2. Related Works
3. The Proposed Incremental Graph-Processing Scheme
3.1. Overall Procedure
3.2. Recalculation Cost Prediction
3.3. Cost Model
3.4. Incremental Processing
Algorithm 1. GAS Vertex-Program |
Input: center vertex u |
foreach neighbor v is empty |
au ← sum(au, gather(Du, D(u,v), Dv)) |
end |
Dunew ← apply(Du, au) |
foreach neighbor v scatter_nbrs(u) |
(D(u,v), △a) ← scatter(Du, D(u,v), Dv) |
end |
Algorithm 2. iGAS Vertex-Program |
Input: center vertex u |
foreach neighbor changed vertex cv in gather_nbrs(u) |
if (cv, flag == 1) then |
cu ← fix(cu, gather(cv.id, cv.old_val, cv.new_val, cv.deg)) |
end |
end |
Dunew ← apply(Du, cu) |
foreach neighbor v scatter_nbrs(u) |
delta = (D(u,v), △a) |
if delta is not converged then |
Du.flag = 1 |
delta ← scatter(Du) |
end |
end |
3.5. Caching
4. Performance Evaluation
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bok, K.; Kim, G.; Lim, J.; Yoo, J. Historical Graph Management in Dynamic Environments. Electronics 2020, 9, 895. [Google Scholar] [CrossRef]
- Junghanns, M.; Petermann, A.; Neumann, M.; Rahm, E. Management and Analysis of Big Graph Data: Current Systems and Open Challenges. In Handbook of Big Data Technologies; Springer: Cham, Switzerland, 2017; pp. 457–505. [Google Scholar]
- Steer, B.A.; Cuadrado, F.; Clegg, R.G. Raphtory: Streaming analysis of distributed temporal graphs. Future Gener. Comp. Syst. 2020, 102, 453–464. [Google Scholar] [CrossRef]
- Huang, Z.; Peng, P. Dynamic Graph Stream Algorithms in O(n) Space. Algorithmica 2019, 81, 1965–1987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, D.; Han, J.; Lim, J.; Han, J.; Bok, K.; Yoo, J. Dynamic Graph Partitioning Scheme for Supporting Load Balancing in Distributed Graph Environments. IEEE Access 2021, 9, 65254–65265. [Google Scholar] [CrossRef]
- Dolgorsuren, B.; Khan, K.; Rasel, M.K.; Lee, Y. StarZIP: Streaming Graph Compression Technique for Data Archiving. IEEE Access 2019, 7, 38020–38034. [Google Scholar] [CrossRef]
- Jin, M.; Li, M.; Zheng, Y.; Chi, L. Searching Correlated Patterns from Graph Streams. IEEE Access 2020, 8, 106690–106704. [Google Scholar] [CrossRef]
- Zhang, Q.; Guo, D.; Zhao, X.; Wang, X. Continuous matching of evolving patterns over dynamic graph data. World Wide Web 2021, 24, 721–745. [Google Scholar] [CrossRef]
- Bok, K.; Jeong, J.; Choi, D.; Yoo, J. Detecting Incremental Frequent Subgraph Patterns in IoT Environments. Sensors 2018, 18, 4020. [Google Scholar] [CrossRef] [Green Version]
- Thomas, D.; Orgun, M.A.; Hitchens, M.; Shankaran, R.; Mukhopadhyay, S.C.; Ni, W. A Graph-Based Fault-Tolerant Approach to Modeling QoS for IoT-Based Surveillance Applications. IEEE Internet Things J. 2021, 8, 3587–3604. [Google Scholar] [CrossRef]
- Wang, B.; Sun, Y.; Sun, Z.; Nguyen, L.D.; Duong, T.D. UAV-Assisted Emergency Communications in Social IoT: A Dynamic Hypergraph Coloring Approach. IEEE Internet Things J. 2020, 7, 7663–7677. [Google Scholar] [CrossRef]
- Ma, S.; Li, J.; Hu, C.; Lin, X.; Huai, J. Big graph search: Challenges and techniques. Front. Comput. Sci. 2016, 10, 387–398. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Zhang, L.; Gulla, J.A. Real-time social recommendation based on graph embedding and temporal context. Int. J. Hum. Comput. Stud. 2019, 121, 58–72. [Google Scholar] [CrossRef]
- Saeed, Z.; Abbasi, R.A.; Razzak, M.I.; Xu, G. Event Detection in Twitter Stream Using Weighted Dynamic Heartbeat Graph Approach. IEEE Comput. Intell. Mag. 2019, 14, 29–38. [Google Scholar] [CrossRef]
- Malewicz, G.; Austern, H.M.; Bik, J.A.; Dehnert, J.; Horn, I.; Leiser, N.; Czajkowski, G.M. Pregel: A system for large-scale graph processing. In Proceedings of the ACM SIGMOD International Conference on Management of Data, Indianapolis, IN, USA, 6–10 June 2010. [Google Scholar]
- Gonzalez, J.; Low, Y.; Gu, H.; Bickson, D.; Guestrin, C. PowerGraph: Distributed graph-parallel computation on natural graphs. In Proceedings of the USENIX Symposium on Operating Systems Design and Implementation, Hollywood, CA, USA, 8–10 October 2012. [Google Scholar]
- Xin, R.S.; Gonzalez, J.; Michael, F.J.; Ion, S. Graphx: A resilient distributed graph system on spark. In Proceedings of the International Workshop on Graph Data Management Experiences and Systems, New York, NY, USA, 24 June 2013. [Google Scholar]
- Wang, J.; Ntarmos, N.; Triantafillou, P. GraphCache: A Caching System for Graph Queries. In Proceedings of the International Conference on Extending Database Technology, Venice, Italy, 21–24 March 2017. [Google Scholar]
- Luaces, D.; Viqueira, J.R.R.; Cotos, J.M.; Flores, J.C. Efficient access methods for very large distributed graph databases. Inf. Sci. 2021, 573, 65–81. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, J.; Liao, X.; Jin, H.; Gu, L.; Liu, H.; He, B.; Hem, L. CGraph: A Distributed Storage and Processing System for Concurrent Iterative Graph Analysis Jobs. ACM Trans. Storage 2019, 15, 10. [Google Scholar] [CrossRef]
- Abughofa, T.; Zulkernine, F.H. Sprouter: Dynamic Graph Processing over Data Streams at Scale. In Proceedings of the International Conference on Database and Expert Systems Applications, Regensburg, Germany, 3–6 September 2018. [Google Scholar]
- Jaiyeoba, W.; Skadron, K. GraphTinker: A High Performance Data Structure for Dynamic Graph Processing. In Proceedings of the International Parallel and Distributed Processing Symposium, Rio de Janeiro, Brazil, 20–24 May 2019. [Google Scholar]
- Bouhenni, S.; Yahiaoui, S.; Nouali-Taboudjemat, N.; Kheddouci, H. A Survey on Distributed Graph Pattern Matching in Massive Graphs. ACM Comput. Surv. 2021, 54, 36. [Google Scholar] [CrossRef]
- Svitáková, L.; Valenta, M.; Pokorný, J. Enhanced adaptive partitioning in a distributed graph database. J. Inf. Telecommun. 2021, 5, 104–120. [Google Scholar] [CrossRef]
- Mariappan, M.; Che, J.; Vora, K. DZiG: Sparsity-aware incremental processing of streaming graphs. In Proceedings of the European Conference on Computer Systems, Online Event, UK, 26–28 April 2021. [Google Scholar]
- Abughofa, T.; Harby, A.A.; Isah, H.; Zulkernine, F.H. Incremental Community Detection in Distributed Dynamic Graph. In Proceedings of the International Conference on Big Data Computing Service and Applications, Oxford, UK, 23–26 August 2021. [Google Scholar]
- Sun, G.; Liu, G.; Wang, Y.; Orgun, M.A.; Sheng, Q.Z.; Zhou, X. Incremental Graph Pattern Based Node Matching with Multiple Updates. IEEE Trans. Knowl. Data Eng. 2021, 33, 1585–1600. [Google Scholar] [CrossRef]
- Gupta, U.; Fegaras, L. Distributed Incremental Graph Analysis. In Proceedings of the International Congress on Big Data, San Francisco, CA, USA, 27 June–2 July 2016. [Google Scholar]
- Pramod, B.; Alexander, W.; Istemi, A.E.; Rodrigo, R.; Umut, A.A. Large-scale incremental data processing with change propagation. In Proceedings of the USENIX Workshop on Hot Topics in Cloud Computing, Portland, OR, USA, 14–15 June 2011. [Google Scholar]
- Dean, J.; Ghemawat, S. MapReduce: Simplified data processing on large clusters. Commun. ACM 2008, 51, 107–113. [Google Scholar] [CrossRef]
- Wuyang, J.; Jianxin, L.; Weiren, Y.; Richong, Z. iGraph: An incremental data processing system for dynamic graph. Front. Comput. Sci. 2016, 10, 462–476. [Google Scholar]
- Zaharia, M.; Matei, C.; Michael, F.J.; Scott, S.; Ion, S. Spark: Cluster computing with working sets. In Proceedings of the USENIX Workshop on Hot Topics in Cloud Computing, Boston, MA, USA, 22 June 2010. [Google Scholar]
- Zheng, D.; Mhembere, D.; Burns, R.; Vogelstein, J.; Priebe, C.E.; Szalay, A.S. FlashGraph: Processing Billion-Node Graphs on an Array of Commodity SSDs. In Proceedings of the SENIX Conference on File and Storage Technologies, Santa Clara, CA, USA, 16–19 February 2015. [Google Scholar]
- Park, H.; Park, C.; Kang, U. PegasusN: A Scalable and Versatile Graph Mining System. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018. [Google Scholar]
- Brin, S.; Page, L. Reprint of: The anatomy of a large-scale hypertextual web search engine. Comput. Netw. 2012, 56, 3825–3833. [Google Scholar] [CrossRef]
- Ran, P.; Zhou, W.; Han, J. NYNN: An In-Memory Distributed Storage System for massive graph analysis. In Proceedings of the International Conference on Advanced Computational Intelligence, Wuyi, China, 27–29 March 2015. [Google Scholar]
- LiveJournal Social Network. Available online: https://snap.stanford.edu/data/soc-LiveJournal1.html (accessed on 21 October 2020).
- Social Circles: Twitter. Available online: https://snap.stanford.edu/data/egonets-Twitter.html (accessed on 21 October 2020).
- Google Web Graph. Available online: https://snap.stanford.edu/data/web-Google.html (accessed on 21 October 2020).
- Stanford Large Network Dataset Collection. Available online: https://snap.stanford.edu/data/ (accessed on 15 July 2020).
- Dijkstra, E.W. A Note on Two Problems in Connexion with Graphs. Numer. Math. 1959, 1, 269–271. [Google Scholar] [CrossRef] [Green Version]
Dataset | Vertices | Edges |
---|---|---|
Live Journal | 1,070,383 | 3,372,093 |
81,543 | 2,419,738 | |
Google Web | 875,713 | 5,105,039 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bok, K.; Cho, J.; Lee, H.; Choi, D.; Lim, J.; Yoo, J. Cost Model Based Incremental Processing in Dynamic Graphs. Electronics 2022, 11, 660. https://doi.org/10.3390/electronics11040660
Bok K, Cho J, Lee H, Choi D, Lim J, Yoo J. Cost Model Based Incremental Processing in Dynamic Graphs. Electronics. 2022; 11(4):660. https://doi.org/10.3390/electronics11040660
Chicago/Turabian StyleBok, Kyoungsoo, Jungkwon Cho, Hyeonbyeong Lee, Dojin Choi, Jongtae Lim, and Jaesoo Yoo. 2022. "Cost Model Based Incremental Processing in Dynamic Graphs" Electronics 11, no. 4: 660. https://doi.org/10.3390/electronics11040660
APA StyleBok, K., Cho, J., Lee, H., Choi, D., Lim, J., & Yoo, J. (2022). Cost Model Based Incremental Processing in Dynamic Graphs. Electronics, 11(4), 660. https://doi.org/10.3390/electronics11040660