Parameter Estimation for Hindmarsh–Rose Neurons
Abstract
:1. Introduction
2. Problem Statement
3. Adaptation/Learning Algorithm Design
4. Main Results
5. Computer Simulation
5.1. Neuron Modeling
5.2. Regular Neuron Modeling
5.3. Robustness of Identification with Respect to Noise
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
EEG | electroencephalogram |
FHN | FitzHugh–Nagumo |
FKYL | feedback Kalman–Yakubovich lemma |
HR | Hindmarsh–Rose |
LTI | linear time-invariant |
ML | Morris–Lecar |
ODE | ordinary differential equation |
PE | persistent excitation |
SG | speed gradient |
References
- Ashby, W.R. Design for a Brain; Wiley: New York, NY, USA, 1960. [Google Scholar]
- Rabinovich, M.; Friston, K.J.; Varona, P. Principles of Brain Dynamics: Global State Interactions; MIT Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Breakspear, M. Dynamic models of large-scale brain activity. Nat. Neurosci. 2017, 20, 340–352. [Google Scholar] [CrossRef] [PubMed]
- Cofré, R.; Herzog, R.; Mediano, P.A.; Piccinini, J.; Rosas, F.E.; Sanz Perl, Y.; Tagliazucchi, E. Whole-brain models to explore altered states of consciousness from the bottom up. Brain Sci. 2020, 10, 626. [Google Scholar] [CrossRef] [PubMed]
- Belyaev, M.; Velichko, A. A Spiking Neural Network Based on the Model of VO2-Neuron. Electronics 2019, 8, 1065. [Google Scholar] [CrossRef] [Green Version]
- Chong, M.; Postoyan, R.; Nešić, D.; Kuhlmann, L.; Varsavsky, A. A robust circle criterion observer with application to neural mass models. Automatica 2012, 48, 2986–2989. [Google Scholar] [CrossRef] [Green Version]
- Dzhunusov, I.A.; Fradkov, A.L. Synchronization in networks of linear agents with output feedbacks. Automat. Remote Control 2011, 72, 1615–1626. [Google Scholar] [CrossRef]
- Furtat, I.; Fradkov, A.; Tsykunov, A. Robust synchronization of linear dynamical networks with compensation of disturbances. Intern. J. Robust Nonlinear Control. 2014, 24, 2774–2784. [Google Scholar] [CrossRef]
- Lehnert, J.; Hövel, P.; Selivanov, A.; Fradkov, A.L.; Schöll, E. Controlling cluster synchronization by adapting the topology. Phys. Rev. E 2014, 90, 042914. [Google Scholar] [CrossRef] [Green Version]
- Plotnikov, S. Synchronization conditions in networks of Hindmarsh–Rose systems. Cybern. Phys. 2021, 10, 254–259. [Google Scholar] [CrossRef]
- Dong, X.; Si, W.; Wang, C. Global Identification of FitzHugh–Nagumo Equation via Deterministic Learning and Interpolation. IEEE Access 2019, 7, 107334–107345. [Google Scholar] [CrossRef]
- Wang, L.; Yang, G.; Yeung, L. Identification of Hindmarsh–Rose Neuron Networks Using GEO Metaheuristic. In Proceedings of the Second International Conference on Advances in Swarm Intelligence-Volume Part I, Chiang Mai, Thailand, 26–30 July 2019; Springer: Berlin/Heidelberg, Germany, 2011; pp. 455–463. [Google Scholar]
- Zhao, J.; Aziz-Alaoui, M.A.; Bertelle, C.; Corson, N. Sinusoidal disturbance induced topology identification of Hindmarsh–Rose neural networks. Sci. China Inf. Sci. 2016, 59, 112205. [Google Scholar] [CrossRef]
- Postoyan, R.; Chong, M.; Nešić, D.; Kuhlmann, L. Parameter and state estimation for a class of neural mass models. In Proceedings of the 51st IEEE Conference Decision Control (CDC 2012), Maui, HI, USA, 10–13 December 2012; pp. 2322–2327. [Google Scholar] [CrossRef]
- Tang, K.; Wang, Z.; Shi, X. Electrical Activity in a Time-Delay Four-Variable Neuron Model under Electromagnetic Induction. Front. Comput. Neurosci. 2017, 11. [Google Scholar] [CrossRef] [Green Version]
- Mao, Y.; Tang, W.; Liu, Y.; Kocarev, L. Identification of biological neurons using adaptive observers. Cogn. Process. 2009, 10. [Google Scholar] [CrossRef]
- Malik, S.; Mir, A. Synchronization of Hindmarsh Rose Neurons. Neural Netw. 2020, 123, 372–380. [Google Scholar] [CrossRef]
- Xu, L. Separable Newton Recursive Estimation Method Through System Responses Based on Dynamically Discrete Measurements with Increasing Data Length. Int. J. Control Autom. Syst. 2022, 20, 432–443. [Google Scholar] [CrossRef]
- Bonci, A.; Fiori, S.; Higashi, H.; Tanaka, T.; Verdini, F. An Introductory Tutorial on Brain–Computer Interfaces and Their Applications. Electronics 2021, 10, 560. [Google Scholar] [CrossRef]
- Chung, M.A.; Lin, C.W.; Chang, C.T. The Human–Unmanned Aerial Vehicle System Based on SSVEP–Brain Computer Interface. Electronics 2021, 10, 25. [Google Scholar] [CrossRef]
- Choi, H.; Lim, H.; Kim, J.W.; Kang, Y.J.; Ku, J. Brain Computer Interface-Based Action Observation Game Enhances Mu Suppression in Patients with Stroke. Electronics 2019, 8, 1466. [Google Scholar] [CrossRef] [Green Version]
- Kovalchukov, A. Adaptive identification and synchronization for two Hindmarsh–Rose neurons. In Proceedings of the 2021 5th Scientific School Dynamics of Complex Networks and their Applications (DCNA), Kaliningrad, Russia, 13–15 September 2021; pp. 108–111. [Google Scholar] [CrossRef]
- Semenov, D.; Fradkov, A. Adaptive control of synchronization for the heterogeneous Hindmarsh–Rose network. In Proceedings of the 3rd IFACWorkshop on Cyber-Physical & Human Systems CPHS, Shanghai, China, 3–5 December 2020. [Google Scholar] [CrossRef]
- Andreev, A.; Maksimenko, V. Synchronization in coupled neural network with inhibitory coupling. Cybern. Phys. 2019, 8, 199–204. [Google Scholar] [CrossRef]
- Fradkov, A.L. Cybernetical Physics: From Control of Chaos to Quantum Control; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Andrievsky, B.R.; Churilov, A.N.; Fradkov, A.L. Feedback Kalman–Yakubovich lemma and its applications to adaptive control. In Proceedings of the 35th IEEE Conference Decision Control, Kobe, Japan, 13 December 1996; Volume 4, pp. 4537–4542. [Google Scholar]
- Hindmarsh, J.L.; Rose, R. A model of neuronal bursting using three coupled first order differential equations. Proc. R. Soc. London. Ser. B. Biol. Sci. 1984, 221, 87–102. [Google Scholar]
- Fradkov, A.L.; Miroshnik, I.V.; Nikiforov, V.O. Nonlinear and Adaptive Control of Complex Systems; Mathematics and Its Applications; Springer: Dordrecht, The Netherlands, 1999; Volume MAIA 491. [Google Scholar] [CrossRef]
- Semenov, D.M.; Fradkov, A.L. Adaptive synchronization in the complex heterogeneous networks of Hindmarsh–Rose neurons. Chaos Solitons Fractals 2021, 150, 111170. [Google Scholar] [CrossRef]
- Storace, M.; Linaro, D.; de Lange, E. The Hindmarsh–Rose neuron model: Bifurcation analysis and piecewise-linear approximations. Chaos Interdiscip. J. Nonlinear Sci. 2008, 18, 033128. [Google Scholar] [CrossRef]
- Annaswamy, A.; Fradkov, A. A historical perspective of adaptive control and learning. Annu. Rev. Control 2021, 52, 18–41. [Google Scholar] [CrossRef]
- Sevasteeva, E.; Plotnikov, S.; Lynnyk, V. Processing and model design of the gamma oscillation activity based on FitzHugh–Nagumo model and its interaction with slow rhythms in the brain. Cybern. Phys. 2021, 10, 265–272. [Google Scholar] [CrossRef]
- Zhang, X.; Ding, F. Adaptive parameter estimation for a general dynamical system with unknown states. Int. J. Robust Nonlinear Control 2020, 30, 1351–1372. [Google Scholar] [CrossRef]
- Zhang, X.; Ding, F. Optimal Adaptive Filtering Algorithm by Using the Fractional-Order Derivative. IEEE Signal Process. Lett. 2022, 29, 399–403. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fradkov, A.L.; Kovalchukov, A.; Andrievsky, B. Parameter Estimation for Hindmarsh–Rose Neurons. Electronics 2022, 11, 885. https://doi.org/10.3390/electronics11060885
Fradkov AL, Kovalchukov A, Andrievsky B. Parameter Estimation for Hindmarsh–Rose Neurons. Electronics. 2022; 11(6):885. https://doi.org/10.3390/electronics11060885
Chicago/Turabian StyleFradkov, Alexander L., Aleksandr Kovalchukov, and Boris Andrievsky. 2022. "Parameter Estimation for Hindmarsh–Rose Neurons" Electronics 11, no. 6: 885. https://doi.org/10.3390/electronics11060885
APA StyleFradkov, A. L., Kovalchukov, A., & Andrievsky, B. (2022). Parameter Estimation for Hindmarsh–Rose Neurons. Electronics, 11(6), 885. https://doi.org/10.3390/electronics11060885